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1.0    Introduction 

1.1 Satellite Constellations 

2.2.2    Multiple Satellite Constellations 

Satellite constellations, groupings of more than one satellite, require 

extensive computing facilities and personnel to track, maintain, and control. 

Some constellations consist of many functionally similar satellites in similar 

orbits, while other constellations include a wide variety of satellites in 

various orbits. 

Many different requirements mandate that satellites be grouped into 

constellations. Some of the reasons for grouping satellites into constellations 

are discussed below. 

• Satellite Functionality 

• Collision Avoidance / Prediction 

• Military Security 

Satellite Functionality : Multiple satellites can be used as a single system. The 

GPS (Global Positioning System) constellation provides position 

determination over the entire planet and to other satellites in space. The Air 

Force, in charge of GPS, must carefully maintain the orbits of all these 

satellites because of their vital role for a number of critical navigation 

systems. Communication satellites can work together to provide whole Earth 

coverage. Functionally grouped satellite constellations will increase in 

number as technology develops and demand for worldwide services grows. 

Collision Avoidance / Prediction: All objects in orbit are considered a 

constellation for the collision prediction and avoidance problem. As the 

number of satellites in space grows, the possibility of collision greatly 

increases. According to König-Lopez, over 3,600 launches since 1957 have 

placed approximately 23,000 objects into Earth orbit.  Only 500 of those objects 
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are currently operational satellites [6]. Non-operational objects consist of dead 

payloads, rocket stages, and other debris. If objects less than 10 cm in diameter 

are included, the number of objects rises to 400,000 [6]. Because these small 

objects are traveling at high velocity, they can cause serious damage to other 

space objects. Manned missions must be especially aware of orbital debris. 

Military Security: Since 1959, the military has kept track of the satellites in 
space for a variety of reasons [1]. Satellite orbits are used to predict the 
function of foreign satellites, for example. Cataloging all space objects 
requires the military to view all objects in space as a heterogeneous 

constellation. Additionally, many critical military systems depend on 

satellites. Military communication, surface imaging, and missile launch 

detection are all critical functions performed by military satellites. As a result, 

the military must track, maintain and control many heterogeneous 

homogeneous constellations. 

All the constellations described above require flight dynamics processes to 
manage their satellites. Orbit propagation, defined in section 1.2, is critical to 
predict the future location of satellites. Orbit determination from raw 
observations keeps the satellite information current so the accuracy of future 
predictions does not degrade beyond requirements. Maneuver planning 
keeps a satellite in the correct orbit. Telemetry uplink and downlink requires 
satellite positions be accurately predicted into the future so that data transfer 
can be planned effectively. It is desirable to not reproduce all the work 
performed for a single satellite when maintaining an entire constellation of 
satellites. However, the process of scaling-up a system from one satellite to 
multiple satellites is not a simple challenge. 

1.1.2    Global Personal Communication Systems 

The recent explosion of interest in developing global personal 
communications systems (GPCS) presents the newest challenge facing 
designers of ground based satellite maintenance systems. A system of 
satellites that allows mobile users on the ground to obtain voice and data 
communication anywhere, anytime promises to fill the skies in the near 
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future. Many existing systems were designed to support only one satellite and 

are not capable of handling a multiple satellite constellation. The Radarsat 

Flight Dynamics System, for example, provides a variety of functions for the 

Canadian synthetic aperture radar satellite, RADARSAT. Observation pre- 

processing, orbit determination, ephemeris generation, ground track 

generation, burn planning, eclipse entry and exit were among the required 

capabilities of this system [46]. The system was designed to support one 

satellite. Because the architecture of the system separated processes into 

communicating services, it could be redesigned to support multiple satellites 

on multiple computers. However, it would not make sense to duplicate the 

single satellite system for each satellite supported. 

Figure 1-1 illustrates the size in terms of the number of satellites for several of 

the currently proposed communication networks. 
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Figure 1-1: Number of Satellites for Each of the Proposed GPCS [47,48, 66] 

These constellations contain more than twice the current number of 

operating satellites. Each system will require tracking, control and 

maintenance of each of their satellites. 

Satellites provide capability for long distance communication which far 

exceeds wire and microwave systems in range and coverage [2]. Many 

previous    satellite    based    communication    systems    have    used    a 
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Geosynchronous orbit [37]. Although the high altitude of a geosynchronous 

orbit provides a large coverage area and eliminates the atmospheric drag 

perturbation, geosynchronous orbits also create many problems for 

communication system design. The high altitude increases the delay time in 

signal transmission [37]. Figure 1-2 compares the minimum delay times 
introduced by a signal traveling to and from a geosynchronous satellite. Note 
this does not include the additional time required for transmission through a 

ground network. 

Delay Time vs Orbital Period 
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Figure 1-2: Delay Time Vs Orbital Period 

For some applications, more than one 'hop' is necessary. A hop represents a 
signal traveling from the Earth to the satellite and back again [2]. The delay 
time at geosynchronous altitudes, almost a quarter of one second per hop, 
degrades voice communication if multiple hops are used [2]. The high 
altitude of geosynchronous satellites also requires more power and gain in 
the communications link, both on board the satellite and at the Earth 
transmitting and receiving station. Because of these disadvantages, most of 
the proposed personal communication systems are planning on using LEO or 
MEO orbits for their constellations. However, the lower altitudes have forced 
designers to use many satellites to achieve world wide availability. 
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1.1.3   Design and Analysis of Satellite Constellations 

The orbit design for satellite-based communications systems can be viewed as 

a constrained optimization problem. Each system described in Figure 1-1 has 

a different orbit design. Each designer optimized the constellation within the 

constraints of the communications system. Some of the systems have similar 

orbits and vary the number of satellites used. Other systems have chosen 

different orbits. The weight given to each of the performance parameters 

along with the system constraints determined the optimal constellation 

design. A few factors that influence the design of constellation orbits can be 

seen below. 

System cost 

Area covered 

Launch costs 

Number of satellites in view from the ground 

Percent of coverage above a necessary elevation angle 

System lifetime 

Minimum separation between satellites 

System availability 

The large number of parameters that are involved in the GPCS constellation 

design make the problem very complicated. Table 1-1 groups the five 

constellations listed in Figure 1-1 according to similarities in their orbit 

design. 

Table 1-1: Orbit types of five GPCS systems 

System Type 

Teledesic LEO 

Iridium LEO 

Globalstar LEO 

Ellipso MEO 

Odyssey MEO 
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LEO systems choose to minimize power requirements in the 

communications link but are forced to use many more satellites than their 

higher altitude competitors. MEO systems favor fewer but more complex 

satellites. Ellipso proposed a unique solution using high eccentricity orbits to 

concentrate their coverage in the Northern hemisphere [48]. 

1.2 Orbit Propagation 

Orbit propagation is the technology of 'computing, from prescribed initial 

conditions, the value at a specified time of the vehicle state and, optionally, 

the state partial derivatives' [49]. In many ways, the orbit propagation method 

used in a ground system is the cornerstone function from which other 

capabilities are derived. Orbit propagation is required to perform every 

satellite maintenance function. Orbit determination, for example, depends 

heavily on the propagation method. Orbit determination uses raw satellite 

observations to 'estimate the satellite orbit and associated parameters' [49]. 

The best state is chosen by minimizing the difference between observations 

and their predicted value; the predicted value is generated by the orbit 

propagation method. 

1.2.1    Influence of Computing Capability on Propagation Methods 

In 1975 Wackernagel listed five factors that 'influence the performance of an 

orbit determination system' [36]. 

• The completeness of the mathematical theory. 

• The models used to approximate the physical world and the 

statistical nature of the data used for data processing. 

• The quality of the data. 

• The available computing hardware. 

• The number of objects supported. 

Because of the heavy use of computers involved with orbit propagation and 

determination, methods must fit the computation facilities available. When 

many objects are to be propagated and their states determined, the balance has 
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been achieved by trading accuracy for computational speed. Historically, 

computer time was precious and, in some cases, thousands of objects had to 

be tracked. Propagation methods were reduced in accuracy to meet the 

minimum required levels while using the limited computer time. 

Computing availability, the physical models and mathematical theory can be 

interchanged to provide a propagation system for a multi-satellite 

constellation. When maximizing accuracy without concern for 

computational speed, orbit propagation is done using purely numerical 

techniques, or direct numerical integration of the equations of motion with 

very high precision physical models. Accuracy of these techniques depends 

on the force model, integration method, and the time step used. Some 

situations may be better served by mean elements1, however. Unfortunately, 

computing limitations restrict the way orbit propagation is done, especially 

when large numbers of satellites are involved. 

Parallel computing changes the way designers look at computing availability. 

Using good parallel software design, more computing capability is available by 

simply adding additional processors to the computer system, without any 

changes in the software. The concept of infinite computing power becomes 

more accessible, bringing with it new and better ways of solving problems. 

1.2.2   Methods of Orbit Propagation 

1.2.2.1  The Equations of Motion 

Central to understanding orbit propagation techniques is understanding the 

equations that describe satellite motion. Work with these equations has been 

ongoing since 1666, when Newton first discovered the law of gravitation [38]. 

Starting with the law of gravitation, the equations of relative motion are 

easily derived after making the two-body assumptions [38]. A full description 

of this derivation is available in many texts, such as Bate, Mueller and White 

[38]. 

^Mean elements describe the average, or mean, satellite position. Maneuver planning is an 
example where mean elements can be used more successfully than osculating elements, which 
describe the true state of the satellite [33]. 
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Adding the perturbative effects to the two-body motion results in equations 

1-1. 

r = -%-r + q (1-1) 
r        - 

where      r        is a three element vector describing the position of a 
satellite in Cartesian space. 

r        is the second derivative of the position with respect to 
time 

—^—r is the two body force on the satellite 
r3 

li        is the gravitational constant Gm, with gravitational 
constant G  and the mass of the central body m. 

2        describes the sum all the perturbative forces on a satellite. 

The solution of equation 1-1, without the perturbative force q , is a conic 

section [38]. This discussion can be simplified to include only satellites that 
remain in a finite space about their central body. The escape trajectories, the 
parabolic and hyperbolic solutions to equation 1-1, will not be considered. 
Considering only ellipses (circles can be considered special forms of ellipses), 

the position of a satellite can be described at any instant in time using five 
constants that describe the shape and orientation of the ellipse, and one 

variable that describes the position of the satellite in the ellipse. There are 
many sets of parameters, often referred to as element sets, that will describe 
the orbit and the position of the satellite at any point in time. The Keplerian 
orbital elements are the most familiar since they describe the position of the 
satellite in geometric terms. An additional element set of interest in this 
thesis is the equinoctial elements. Both sets are described in Appendix A. 
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1.2.2.2 The VOP Equations 

The variation of parameters (VOP) method of formulating orbital motion 

can be very helpful, especially when effect of the perturbations is small 

compared to the unperturbed motion [38]. The VOP equations describe the 

perturbed motion of a satellite in terms of one of the element sets. Therefore, 

the physical effects of perturbations on a satellite's orbit are more easily seen 

than in equation 1-1. The following derivation presents the basic 

formulation of the VOP equations of motion, as presented by Battin [5, 39]. 

Separating equation 1-1 into two first order equations gives equations 1-2. 

dt 
dv    u 

■ = v         -r + ^r = ad(t) + 
dt     r          

dR 
-]T 

(1-2) 

where: 
L-n(t,cc) 

¥ = v(t,a) 

a 

dR 

is the position vector 

is the velocity vector 

is a vector containing the six orbital elements 

(a,e,i,co,Q., T) . The quantity % is the time of 
pericenter passage. 

is the gradient of the disturbing potential. The 

disturbing potential contains the conservative 
perturbations to the two-body motion. 

is the sum of the non-conservative disturbing 
accelerations. 

By the chain rule of differentiation, the ordinary derivatives of the position 

and velocity can be transformed into partial derivatives [5]. 

dr _ dr dr da 

dt     dt da dt 

dv _ dv dv da 

dt     dt da dt 

(1-3) 
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At any instant in time, the disturbed positions and velocities are the same as 

the two-body position and velocity. The orbital elements of the disturbed and 

two body satellites are different from the two body orbital elements, however 

[39]. This is illustrated in Figure 1-3. 

Disturbed Orbit 

Position of Satellite 
at time t, 

Two Body Orbits 

osition of Satellite 
at time t-i 

At any time t, there is a two-body orbit 
with the same r and v but different 
orbital elements. 

Figure 1-3:  The Relationship of the Disturbed and Two-Body Orbits 

If the two-body orbit is used in equations 1-3, the second term on the right 

hand side of both equations will go to zero; the vector a does not change 

with time for two-body motion. Thus, the partial derivative of the two-body 

position and velocity vector is equal to the ordinary derivative. 

As shown in Figure 1-3, at any point in time, velocity vector of the perturbed 

orbit is the same as the velocity vector of the two body orbit. Therefore, the 

partial and ordinary derivatives of the position vector are equal for both the 

disturbed motion as well as the two-body motion. This is shown in equation 

l-4a. 

dr _ dr 

dt     dt 
(l-4a) 

The partial derivative of the velocity vector with respect to time represents 

the two-body acceleration of the satellite [5]. This is shown is equation l-4b. 
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dv _    ß 
1t~    r3- 

(l-4b) 

Rearranging equation 1-3 and applying equations l-4a and l-4b results 

equations 1-5. 

in 

dr dr _ dr da 
dt dt     da dt 

dv dv _ dv da 
dt dt     da dt 

= 0 

= a,,+ 
dR 

(1-5) 

Equations 1-5 are the "required six scalar differential equations to be satisfied 

by the vector of orbital elements [5]." This fact can be seen more clearly in 

equations 1-6 and 1-7. 

dr da 
da dt 

= 0 

dv da 
da dt    — 

dR 
dr 

(1-6) 

(1-7) 

1.2.2.3 Lagrange Planetary Equations 

The Lagrange Planetary Equations are a form of the VOP equations which 
include only the conservative perturbations on a satellite.   Setting ad = 0 in 

equation 1-7 gives equations 1-8. 

dr da _ 
da dt 

dv da 
da dt 

dR 

(l-8a) 

(l-8b) 
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Equations 1-8 can be put into a more familiar form by first multiplying 

equation l-8a by 
da 

and equation l-8b by 
da 

, and then subtracting the 

first from the second. The result is shown in equation 1-9 [5]. 

da 
Li 

- dt 
dR 
da 

-\T 

(1-9) 

where: 
-\T 

da da da 

-\T 
dt_ 
da 

The matrix L is known as the Lagrange matrix [5]. The Lagrange matrix is a 

six by six matrix which is skew symmetric matrix and not an explicit function 

of time [5]. To solve directly for the rate of change of the orbital elements, the 

inverse of the Lagrange matrix must be determined. This matrix is known as 

the Poisson matrix, shown in equation 1-10 [39]. 

dt     = 
dR 
da (1-10) 

where: 
P = -L"1 or PT = L"1 as P and L are skew symmetric. 

P is known as the Poisson matrix. 

Battin describes the derivation of the Keplerian VOP equations from equation 

1-9, known as Lagrange's Planetary Equations [5]. More important to this 

study, however are the VOP equations in equinoctial elements. These 

equations can be found in Cefola and Broucke [74]. 

1.2.2.4 General and Special Perturbation Theories 

Historically, orbit propagation could account for perturbations using two 

distinct methods, general and special perturbations [4, 5]. General 

perturbation methods allow for the prediction of a satellite state to be attained 

directly, without using numerical integration methods.   Satellite states are 
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represented as a function of time. Special perturbations, on the other hand, 

calculate the satellite state rates and then step forward in time using a 

numerical integration method.   Both methods have advantages. 

General methods use the relatively small difference between Keplerian and 

non-Keplerian potentials on a satellite. The potential on a satellite can be 

expressed in Equation 1-11 [4]. 

U = U0 + R 

(1-11) 

where:    U is the total potential on a satellite 

o is the potential from the spherical central body 

R is the potential due to the perturbations. 

The Keplerian solution for the motion of a satellite only includes the two- 

body potential U0. General theories represent the solution to the perturbed 

motion (the potential U) of a satellite as slowly changing orbital elements. 

This can be done because of the large difference between U0 and R [4]. This 

view of orbital perturbations expresses only the conservative forces on a 

satellite. Non-conservative forces, drag and solar radiation pressure are 

included in several of the general perturbation theories but many 

assumptions must be made to include non-conservative forces [75]. 

When using general perturbation methods the amount of processing 

required for the calculation of a future state of a satellite is independent of the 

amount of time between the initial state and the request time. This can be a 

valuable tool and is the largest single advantage of general perturbation 

theories. However, because most theories in use truncate at relatively low 

powers of a small parameter, the accuracy of these techniques is limited. This 

is especially apparent when compared to purely numerical methods for long 

time spans. Additionally, developing a general perturbation method requires 

significant effort to create analytic formulations for each perturbation that is 

included in the theory. 
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Special perturbations require less mathematical development in the theory 

although the accurate determination of the perturbative accelerations can be 

very complex. The simplicity of the theory, once the perturbative forces are 

calculated, can be seen more easily in Equation 1-1, the general form of the 

equation of motion of a satellite in Cartesian space. 

A Cowell technique uses the numerical propagation scheme to integrate 
equation 1-1 forward in time. This method can result in very accurate 
predictions if the quantity q is thoroughly developed.   As the time difference 

between the initial state and the requested value increases, more computer 

processing is required since each integration-step requires one or more re- 

calculations of the rates at that point of time. The re-calculation of the rates 

are very expensive in terms of computer time. 

Step sizes in a numerical integration scheme are determined by the frequency 
content in the rates, the desired accuracy and the method of integration used 
[7]. This can be easily seen in the mathematics of a numerical integration 
method. Given the initial condition x„ , describing the state of a satellite at 
time t,> , the differential equation 

x' = f(x,t) 

with the initial conditions x = x0 at time t = t0 (1-12) 

where:    x'  is the rate of change of x at time t 

can be solved for a future time, to+^t. Note the i'th rate is dependent on the 
entire state x. After taking n steps of size Ar , the solution to the equation at 
time to +nAt will be found. Of course, using a numerical integration method 
to solve Equation 1-12 introduces error. The error in each state is described in 

Equation 1-13 [7]. 
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Xi{te+nAt)-xn. = T + R+&^ (1.13) 

where: Xi(t0+nAt)    is the true solution at time t0 +nAt 

~xn.  is the numerically integrated state at time t0 + nAt 

T is the truncation error in the i'th element 

R is the round off error in the i'th element 

$   is the error in the i'th element due to 

evaluating /,. at (xn,t) rather than (x(t0 + nAt),t). 

Truncation error is described as the difference between the numerical method 

used and the infinite series Taylor expansion [7]. A numerical method 

solution is normally described as a 'nth order method', as the truncation 

error differs from the numerical solution by the time step to the power of 

n+1. For example, Runge Kutta Four matches the Taylor series expansion 

through fourth order. 

The round off error is dependent on the number of decimal places used in 

performing the calculations. It limits the total number of steps that can be 

taken so that the solution can still be trusted [7]. Modern computers now 

have very good precision, but this limit still prevents step sizes from 

becoming exceedingly small. 

Finally, the error & describes the error introduced by evaluating /,. using the 

incorrect value of x. This error and the truncation error control the upper 

bound on the step size that can be used, while the lower boundary is 

controlled by the number steps required to get to a desired time as well as 

round off error [7]. In order to reduce computation time, the largest time step 

that can be used without introducing excessive error should be used. By 

using a higher order method, the upper limit on the step size due to 

truncation error can be extended, if necessary. A harder look at the error & 

will show how to lengthen the step size limit imposed by ■&. 

From Kreyszig [7], the error #. in the i'th element of x at the n+1 time step 

to first order in At is described in Equation 1-14. 
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— dfix,t] 

(1-14) 

df 
where:    -~= is the partial derivative of the i'th state rate with respect to 

ox 
the state vector, the result being a row vector. 

xn lies between x(tn + nAt)  and xn in accordance with the mean 
value theorem. 

7]n = x(t0 + nAt) - xn   or the column vector of errors in xn 

Equation 1-14 shows that the error contributed by # to each state is 

approximately the difference between the true and numerically propagated 

rates multiplied by the time step.  In order to lengthen the time step one must 

try to minimize -M, as this error is directly dependent on the time step.   In 
ox 

terms of Equation 1-1, this value describes the rate at which the state rates 

change with respect to the states or the frequency content of the right hand 

side. 

1.2.2.5  Semianalytic Techniques 

Semianalytic techniques of orbit propagation attempt to take advantage of 

both the numerical techniques of special perturbation theories and analytic 

development of general theories. The goal of these methods is to attain the 

accuracy of numerical techniques and the speed advantages of general 

methods. Additionally, semianalytic theories also provide mean elements, 

which are discussed in section 1.2.3.1. 

The motivation for developing semianalytic methods is derived from the 

previous analysis of numerical integration.   If the frequency content, -M can 
dx 

be reduced, a larger step size can be used in the integration process. This not 

only increases the speed of the integration process by reducing the number of 
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Steps taken but also reduces the effect of round off error. In a semianalytic 

theory, the frequency content of the right hand sides are kept to a minimum 

using the variation of parameters (VOP) equations discussed in section 1.2.2.2 

and the generalized method of averaging. Applying averaging to the VOP 

equations removes the high frequency terms whose secular perturbative 

effect on a orbit average to zero.   This significantly reduces the rate of change 

of the satellite rates, resulting in smaller -^-'s and larger step sizes. 
ox 

1.2.3   Draper Semianalytic Satellite Theory 

1.2.3.1  Overall Outline 

The software implementing the Draper Semianalytic Satellite Theory (DSST) 

was developed in the late 1970's and early 1980's. Engineers began to work on 

it at the Computer Sciences Corporation and continued at Draper Laboratory 

in Cambridge, MA, where graduate students also contributed to the 

development [8]. Refinement of the theory and associated software has 

continued since that time to the present day. The mathematics of the theory 

is discussed in several reports. The single most complete document has been 

published by the Naval Postgraduate School [8]. The accuracy of the DSST has 

been well tested through numerous studies and work with the software [33, 

40]. Because the theory is accurate and computationally efficient for long 

term, high precision predictions, a version of the DSST was used for parallel 

orbit propagation. The DSST will therefore be discussed in full detail. It is 

especially important to highlight the difference between mean and osculating 

elements. The basic flow of the derivation comes from the work of McClain 

[9]. This derivation will only examine the simplest form of the DSST, where 

the averaging interval is the period of the satellite. This constraint prevents 

the inclusion of resonance, which requires more complex averaging 

intervals. 

A generalized form of the Variation of Parameters (VOP) equations is used to 

start the derivation. As shown in section 1.2.2.2, the VOP equations describe 

the rate of change of a satellite's in orbital elements.   The DSST uses the non- 
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Singular equinoctial element set, thus avoiding problems when propagating 

near circular, equatorial, or polar orbits. A description of the Keplerian 
elements, the equinoctial elements, and the relationship between the two can 

be found in Appendix A. 

The VOP equations are expressed in terms of the equinoctial elements. The 

left hand side of this first equation is then transformed using the near identity 
transformation and a Taylor's expansion about the mean element rates. The 

near identity transformation is used to relate the osculating, or actual value of 

the elements, to the averaged elements through a power series expansion in a 

small parameter. The mean element rates are then represented as a power 

series expansion of the same small parameter and functions of the five slowly 

varying mean elements. 

The right hand side of the first equation, the generalized VOP equation, is 
transformed using a Taylor series expansion. These functions are expanded 
about the six mean elements. The near identity transformation is used again 
to express the Taylor series expansion as a power series in the small 

parameter. 

With both sides of the first VOP equation expanded in the small parameter, 
terms of like powers in the small parameter are equated. These equations are 
then averaged over the fast variable or one orbital period of the satellite. The 
equations for the mean element rates are finally determined as functions of 
the average contributions of the perturbing functions. These rates are of very 
low frequency; they do not change rapidly with time. This reduces the size of 

the parameter  -^ so longer step sizes can be used when numerically 
dx 

integrating the mean element rates. 

1.2.3.2 Equations of Averaging 

The derivation of the simplest form of the DSST begins with a generalization 

of the VOP equations [9]. 
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^. = eFf(a,A) i = [l,2,...,5] 

dt       K iJ       6K (1-15) 

where:    a is the vector of the five slowly varying orbital elements 

A. is the fast variable 

n is the mean motion 

e  is the small parameter 

Fi is the function describing the time rate of change of the i'th 
element caused by perturbative forces. 

All elements in this first expression of the VOP Equations of Motion are 

osculating elements, representing the true state of the satellite. The quantity 

£ is called the small parameter because of its relative size. There is always a 

small constant associated with perturbative forces because their effects are 

small relative to the motion caused by the two-body forces. The unperturbed 

equations can be seen if e is set to zero; the equations become exactly the 

two-body equations of motion represented in equinoctial elements. 

den . dA 
— = 0        z = [l,2,...,5] — = n(fl,) 
dt dt (1-16) 

The near identity transformation, equation 1-17, relates mean and osculating 

elements through the small parameter e. Equation 1-17 is an important 

concept for the Generalized Method of Averaging [9]: 

a, - a, + er\iX + £2T]i2 +... i = [1,2,...,5] 

A=I + £776I+£27762+... (1_17) 
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where:     o,i  represents the i'th    mean equinoctial element (a mean 
element designated by the overbar). 

77   represents 2TC  periodic functions, dependent on the six mean 
equinoctial elements. 

The near identity transformation states that the osculating elements are 

dependent on the mean elements plus an infinite series in the small 

parameter. The small parameter is multiplied by the periodic functions, 

hereafter referred to as the short periodic functions. It is important to point 

out the osculating elements represented in equation 1-17 are dependent on 

the mean elements, including the mean fast variable, and the short periodic 

functions. The purpose of applying the averaging operator is to remove the 

fast variable dependence and the short periodic functions from the equations 

of motion. This alternate set of equations of motion will be called the mean 

equations of motion. 

The next step involves assuming a form for the mean equations of motion. 

The mean element rates are expressed as an expansion in the small parameter 

and functions of the slowly varying mean elements. 

da-,       ,   /-N      2 

dt 
eAi,(a) + e2Ai2(a)+...   i = [l,2 5] 

—^n(a1) + £46J(a) + e2^(a)+... 
at (1-18) 

Equations 1-17 and 1-18 are assumed forms for the osculating and mean 

elements, respectively. The rest of this derivation will demonstrate how to 

calculate the short periodic functions Vij and mean functions, Au 

By differentiating the near-identity transformation with respect to time we 

achieve an equation relating the mean and osculating element rates. 
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da.     da,      ^df]iXdak      2v^2^, 
—- =—!■£/ —— •■£ y, -\— •"•• 
dt      dt       £J dak   dt f^ dak   dt 

dX    dX      ^dr]6idak      2v dT}e2dakt 
 = !"£/  —— 1" £   / ,   ^— r... 
dt      dt       f^ dak   dt f^ dak   dt 

i = [l,2,...,5] (1-19) 

where:    U(> takes the place of ^ in the summation. 

Substituting equation 1-18 into equation 1-19 gives 

-^- = £An(ä) + e2A,.2(ä)+... 
dt 

+e^-n{äx) + ej^^-ieA,, (ä) + e2\2&+]... 
da6 t?i °ak 

+e2 ^n(äx) + e
2£^[£An(a") + e2A,2(ä)+...]+. 

da6 k=x dak 

i = [l,2,...,5] 
JI _ _ 

—- = [n(ä~x) + e\, (I) + £%i2 (a)+... ] 
at 

+£[^n(71) + j^^[sAkl(ä) + e2Aka(l)+...] 
dak 4=1 ctaA 

+£2[^«(^) + i^l2-[eAiI(ä) + £X2(ä)+-]+- 
0*0* t=i o'fljt (1-20) 

Even though all equations have only been expanded out to second order in e, 

terms of up to fourth order are present. The semianalytic theory takes 

advantage of the fact e is small. Only in a few cases is it necessary to expand 

out e beyond first order [41]. Equations 1-20 can be reduced by combining like 

powers of e and ignoring terms of third and higher order. 
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dt da,- 

*~* da, da. k=\   ""k ""~k 

i = [l,2 5] 

^ = n(a~1) + s[A6](l) + ^-n(a~)] 
at ' da, 6 

cta6 4=1 otoA (1-21) 

The osculating element rates are now represented as functions of the mean 

elements and short periodic functions. These expansions for the osculating 

element rates will later be substituted into the left hand side of equations 

1-15. The right hand side of the functions in equations 1-15 will now be 

expanded using a Taylor series expansion about the mean elements. With 

both sides of equation 1-15 expanded into a power series in the small 

parameter, like terms can be equated generating equations for the mean 

functions Altj. 

— — 6 r)F        1      6 r) 
Fi{^) = Fi{^) + JjAak^ + UjjAak^=fF^     i = [l,2,...,6] 

n?       oak     2 k=]       dak 

(1-22) 

where:    Aak is the difference between the k'th osculating and mean 
element. 

The last term of equation 1-22 can be re-written to make the number of terms 

more apparent: 

- — 6 r)F        1    6     6 d      r) 
Fi(a^) = Fl(a^) + ^Aak^ + ±^AakAal-^^L(Fi)+...     i = [l,2 6] 

£i        dak     2til^ dakda, 

(1-23) 
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This expansion can be reduced using the near-identity transformation, 

equation 1-17. Subtracting the mean elements from both sides of equation 1- 

17 and ignoring terms of third order and higher in e gives: 

a, - ä, = Aa. = £T]iX + £2 T]i2 i = [1,2,..., 5] 

A - A = AA,. = £776, + £ ri62 (1-24) 

Replacing Aak  in equation 1-23 with equation 1-24 gives: 

F;(a,A) = F,(ä,Ä) 

tl dak 

1    6   6 d    d 

2HW <™* °ai 

* = [1,2,...,6] 

(1-25) 

Again, the equation 1-25 is simplified by combining like terms through 

second power in £ . 

F,(a,A) = F,(a",Ä) 

H?       oak    tlti dak da, 

i = [l,2 6] 

(1-26) 

The mean motion, «(a,), is the only osculating variable left in equations 1-15 

This can also be expanded about ax in a Taylor series expansion. 
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dn      1 -   2 d2n 
i,^ —/i.   r Vct, — ttjj—=r + —(fl, — <3l)    —= 

da,     1 da, 
n(a]) = n + (a1-al)-:= + —(al-ai)     _2+... (1-27) 

Applying the modified form of the near identity transformation, equation 1- 

24 where k=l, to equation 1-27 gives: 

n(a,) = n + [£7/,, + £277, 2]-= + -[£77,, + £277,2]2 -=r+- (1-28) 
<7a,     2 c/a, 

Again getting rid of the third and higher order terms in the small parameter 

leaves equation 1-29. 

dn       2r       dn     I      2 d2n. 
-= + £2[7712-= + -77u   — 
dax dax     I        da, 

n(fl1) = « + £77u-^ + £2[7712-= + -771I
2^-] (1-29) 

Substituting 1-29, 1-26, and 1-21 into equations 1-15 and then combining like 

orders of the small parameter results in equations relating the functions of 

the mean element rates to the 2% periodic functions. 

Setting the terms of the first order coefficients equal gives: 

AM+n^ = F,(ä,I)     « = [1,2 5] 
da6 

da, or 6 oa\ (1-30) 

while the second order terms create equations 

A,+Ä+i4,,^ -ix,^) ,=^....5] 
da6     k=]    '  dak       k=]    '      dak 

(7ü!6     £7f        a^      £y aak da}     2        da 
+ J1   ^+'-T1]/~     (1-31) 
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The next step is to solve for the Au functions. The equations 1-30 and 1-31 

provide the expressions to determine the AtJ functions, as everything in the 

above equations is known, except for the 77 functions. In the original 

definitions of the functions 77, the only constraint imposed upon them were 

that they be 2% periodic in the fast variable, X. Application of the averaging 

operator to equations 1-30 and 1-31 will develop the averaged equations of 

motion by removing the 2TI periodic functions from those expressions. 

1.2.3.3 Averaging 

The Generalized Method of Averaging is used to remove the high frequency 

terms from the equations of motion. The Generalized Method of Averaging 

removes the variable of interest from the equation through integration. The 

averaging operator is defined as 

.  in 

(g(x))x=^-jg(x)dx (1-32) 
m 0 

where     g(x) is the function to be averaged 

x is the variable to be averaged over 

0-2TI is the interval over which the average value is determined 

Application of the averaging operator to equation 1-32 removes the variable x 

from the resulting equation. Similarly, averaging the equations of motion 

over the fast variable, A, will remove from the fast variable dependence from 

the equations of motion. This will result in a set of first order, slowly varying 

differential equations. The averaged equations of motion can then be 

numerically integrated with a much larger time step than those that 

depended on the fast variable. 

The averaging operator has many properties which will be useful in the 

following sections. These properties come from [9]. 
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(x(a,X) + Y(a,X))x=(x(a,X))x+{Y(a,X)}^ 

Superposition Principle 

(cX{l,X))x=c{x{a,X))x 

-^=X(a,X)\   =-~(x(a,l))x   k = [l,2,...,6] (1-33) 
\ C'ak 11        "ak 

Properties of Linear Operators 

1.2.3.4 The Averaged Equations of Motion 

Applying the averaging operator to the equations 1-30 and 1-31 and using the 

properties in equations 1-33 gives: 

(Au) + ln^k) = (Fi(a,Ä))     * = [1,2,...,6] 
da6 

(^)) + Ä\ = L    *   +(F«(5,X)} (1-34) 
da, /    \    ' da. 

where the averaging in equations 1-34 and 1-35 is done with respect to the fast 

variable X. 

The original definition of the short periodic function, r\is, requires it to be 2TC 

periodic in X.  When averaged these functions are identically zero. 
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'^,1 4£ = 0 
\dfl6/ 

(1-36) 

Combining equation 1-36 with equations 1-34 and 1-35 and solving for the 

functions A leaves equations 1-37. 

A,,=(F,.(i,X))     f = [l,2 5] 

A5il(i) = /j?u^\ + (F6ÄX)> (1-37) 

Equations 1-37 and 1-38 can be further reduced by noting that the Au 

functions are not dependent on the fast variable, X. Applying the properties 

described by equations 1-33 gives: 

(±A.M--±A,m--±A/M--o  ,-[,.2......    a-m 
\k=l aak I       k=\ \ aak I       k=\ aak 

Note that the short periodic functions in equations 1-39 and 1-40 are not 

multiplied by another function of the fast variable. The properties of 

equations 1-33 apply only if the function removed from the operator is 

considered a constant by the averaging operator. 

The simplifications described in equations 1-39 and 1-40 allows equations 1-37 
and 1-38 to completely specify the At • functions in terms of the averaged force 

contribution and an expansion of the mean motion. 

43 



Au=(F,(a,A)}     > = [1,2,...6] (1-41) 

A,=(il„^^)     / = [1,2,...,5] (1-42) 

Replacing equation 1-18 by the functions described by equations 1-41 through 

1-43 completes the development of the averaged equations. 

f=e{F,m^ipu^m i=[.,2...,5]    (M4) 

d^i      ,-\     /P/-TN\      2/v      <?F6(a,A)\     2/l     2 d2n 

(1-45) 

One more thing is interesting to note about the averaged equations of 

motion. The second and higher order terms are not independent of the short 
periodic functions. The second order contributions At_2 depend on the first 

order short periodic functions. 

1.2.3.5  Short Periodic Functions 

With the averaged equations of motion explained, the next step is to develop 
equations for the short periodic functions. While the DSST numerically 
integrates the averaged equations of motion, analytical expressions are 
developed for the short periodic variations. These expressions are expanded 
in a Fourier Series and then integrating analytically. Like the previous 
derivation, this development follows the work cited in reference [9]. 

Subtracting equations 1-37 and 1-38 from equations 1-30 and 1-31 leaves 
equations 1-46 and 1-47. 
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n- F,.(a,A)-(F,(a,A))   i = [1,2 5] 

Ä^1J^-(n1,-^) + F6(i.I)-(F6Äl)) (1-46) 
da6 ' dax daj 

-d7]i2 

da, = 2X dFfaX)  / 6 ^-(a,^ 

6 4 = 1 dah \*=1 ia* 

6 <9T7-I   / 6 ,?«., 

*=1    '  dak    \k=\    '   *** 

i = [l,2,...,5] 

n- 
dn 
da, ̂

±njjm-i±nj-^m^^-U^ 
6 *=1 dav \k=\ k 

+ 2?7u  «V     \2r7u   ^ 

<iat <9a (9a 

da. 
U^-lt^ 
k=l da k      \*=i da 

(1-47) 

Now, the equations 1-46 and 1-47 can be used to solve for the functions 7]u. 
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77,, =Aj[F/(a,A)-(Fi(a,A))]dA   i = [l,2,...,5] 
n 

1 rr       dn dn ^=1^™- U^ +F6(a,A)-(F6(a,A))]^ 
(9a 

(1-48) 

«J £?      <*«*     \n?      <*«*   / 

*=i        ofl*      U=i        a«* 
]dA 

i = [l,2 5] 

» S      <<<■»     \s      <*««   / 

+5»u 
2 

<9« 
da. -u 1.2 

1      , <92n 

<V 
1      2 <92rc 

"2^ ^ 2A  ,—   \2A.i J— 
*=i Ja,. dat 

dn 

da. 

]<U 

(1-49) 

With the short periodic equations of motion determined, they can be 

integrated to solve for the osculating elements at any time. 

1.2.3.6   Interpolation 

Before calculating the short periodic contributions to the equations of motion, 

it is valuable to mention how the implemented versions of the DSST actually 

calculate the mean elements at each request time. Because the short periodic 

functions are removed from the mean elements, long integrator step sizes 

can be used to calculate the mean elements. Typical step sizes used are a day 

or more [32]. Rather than numerically integrating to each request time an 

interpolator is used whenever possible. Long step sizes are used to propagate 

ahead of the next request time. The interpolator then generates a polynomial 

which describes the elements over the request interval. The mean elements 

can then be calculated for any time within the propagated time span by a 

simple polynomial evaluation. 
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An interpolator is also used in evaluating the short periodic functions. Once 

the mean elements are evaluated at the request time, a check is done to see if 

the request time is within the short periodic coefficient interpolators. If the 

interpolators do not exist, an interval containing the request time is divided 

up into equal size steps. The short periodic coefficients are evaluated at each 

step and a coefficient interpolator is set up for the interval. 

In the current software, the mean element and short periodic interpolators 

are aligned to the same times.  This is not a requirement, however. 

The flow of calculations in the DSST is depicted in figure 1-4. 
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Evaluate the mean 
elements two time 

steps ahead. 

I 
Generate interpolators 
for the mean elements 

between the 
current time and two time 

steps ahead. 

Compute the mean 
elements at the 
request time. 

Generate an interval 
containing the request 

time. Divide the interval 
into equal length 

steps. 

I 
Compute the short periodic 

coefficients at the interpolator 
points. Set up a coefficient 
interpolator for the interval. 

Add the short periodic 
variations to the mean 
elements to generate the 

osculating elements. 

Figure 1-4:  Flow of the DSST 
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2.2.4   Orbital Perturbations 

For artificial satellites placed in orbit about the Earth, the acceleration of 

perturbations in comparison to that of the spherical body is relatively small. 

However, because the goal is to analyze satellite orbits over a significant 

period of time, perturbations will be important as they can cause large 

changes in the location of a satellite over a long time span. A sun 

synchronous orbit, for example, uses the Earth's equatorial bulge to rotate the 

satellites longitude of ascending node through 360° per year, thus keeping the 

orientation of the satellites orbital plane constant with respect to the Sun [3]. 

For communication systems composed of a constellation of satellites, the 

effects of perturbations impact the constellation design as well as the satellite 

design. The orbits in a constellation must be designed to maintain the 

required orbital parameters within mission constraints. 

The mathematics of the various perturbations is discussed in a variety of 

places, therefore a full development will not be done here. Some references 

that can be used for more information on orbital perturbations include Battin 

[5] , Fonte [11], Jablonski [33], and Sabol [50]. This short discussion on orbital 

perturbations will examine how the perturbations effect the orbital elements. 

1.2.4.1 Secular, Long Periodic and Short Periodic Effects 

Orbital perturbations are classified with respect to how they change each of 

the elements over time. A secular change appears as a monotonically 

decreasing or increasing change on the orbital element. A short periodic 

effect appears as a periodic variation in the orbital element. A long periodic 

effect is similar to a short periodic effect, but has a much longer period. 
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Figure 1-5:  Short Periodic, Long Periodic, and Secular Variations 

As can be easily seen in Figure 1-5, the time of interest controls the difference 

between the short periodic variations and long periodic variations. If a much 
shorter time interval was used, a short periodic variation would look like a 
long periodic variation. For this analysis, the important length of time to be 
considered will be the lifetime of the satellite system. Generally, 
communication system satellites have a lifetime on the order of five to ten 
years. There are exceptions to this rule, however. Orbcomm is a satellite 
system composed of 24 satellites that will target the US for low data rate 
communication. This satellite only plans on a two year lifetime for each 
spacecraft [12]. Table 1-2 lists the expected lifetimes of each of the satellite 

systems mentioned in Figure 1-1 [48]. 
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Table 1-2: Lifetimes per satellite for the proposed communication systems [37] 

System Lifetime In Years 
Teledesic 10 
Iridium 5 

Globalstar 7.5 
Ellipso 5 

Odyssey 12 

It is helpful to distinguish between secular, short periodic and long periodic 

effects as these categories help the orbit designer understand the impact 
perturbations will have on each of the elements. Some secular effects and 
long periodic effects must be compensated for by thrusting maneuvers or may 
require changes in the nominal orbit that remove the undesirable 
perturbative effects. Other effects are essential to the orbit design, as in the 
sun-synchronous orbit. Short periodic variations can also cause variations 
greater than the tolerance allowed in an orbit design. 

1.2.4.2 Effects Considered 

In general, there are four major perturbations considered in performing orbit 
analysis for artificial satellites about the earth.   These perturbations are: 

• Geopotential 
• Drag 
• Third Body 
• Solar Radiation Pressure 

Of the above perturbations, drag and solar radiation pressure are non- 
conservative. Non-conservative perturbations change the energy of a 
satellite. The geopotential perturbations are divided into the zonal, sectoral, 
and tesseral harmonics. Each type of geopotential perturbation effects a 
satellite differently. As previously mentioned, there is always a small 
parameter associated with each of these orbital perturbations. This parameter 

helps describe the relative magnitude of each of the perturbations. Table 1-3 
lists the force per unit mass of several of the perturbations [19]. 
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Table 1-3: Force per Unit Mass (meters/sec2)[19] 

ALTITUDE (KM) 
PERTURBATION 150 750 1500 36164 

Geopotential 
Zonals 

J2 30e-3 20e-3 14e-3 160e-7 

J3 .09e-3 .06e-3 .04e-3 .08e-7 

J4 .07e-3 .04e-3 .02e-3 .01e-7 
Tesserals 

J2,2 .09e-3 .07e-3 .04e-3 .5e-7 

Drag 3e-3 le-7 NA NA 
Area/Mass= 

0.0212 (msq/kg) 
Third Body le-6 le-6 le-6 7e-6 
(Lunar Solar 
Attraction)2 

Solar Radiation le-7 le-7 le-7 le-7 
Pressure3 

1.2.4.3 Effects of Orbit Perturbations on Satellites 

It is difficult to generalize the effects of most orbital perturbations on all 
satellites because of their sensitivity to the satellites orbit. However, it is 
possible to generate a table of the type of effects orbital perturbations will have 
on the classical orbit elements. Table 1-4 describes the effects of perturbations 
on the orbital elements. 

2Based on the Vanguard I Satellite.  Reference Blitzer [19] 
3Based on the Vanguard I Satellite.  This is not the direct attraction but the effective 
disturbing force. Reference Blitzer [19] 
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Table 1-4: Effect of Perturbations [19,20] 

Semi- 
Major Axis 

Eccentricity Inclination Longitude 
of Node 

Argument 
of. Perigee 

Mean 
Anomaly 

Geopotential 
Even Zonals Periodic Periodic Periodic Secular Secular Periodic 

All Zonals Periodic Periodic Periodic Periodic Periodic Periodic 

Tesserals Periodic Periodic Periodic Periodic Periodic Periodic 

Drag Sec 
Decrease 

Sec 
Decrease 

Periodic Periodic Periodic Periodic 

Solar / Lunar Periodic Periodic Periodic Sec/ 
Periodic 

Sec/ 
Periodic 

Periodic 

Solar 
Radiation 
Pressure 

Sec/ 
Periodic 

Sec/ 
Periodic 

Sec / 
Periodic 

Sec/ 
Periodic 

Sec/ 
Periodic 

Sec/ 
Periodic 

Because the semi-analytic theory is important to this project, the next section 

gives an example of including a perturbation in the semianalytic theory. This 

example includes just the J2 perturbation effect on the mean elements. A 

further expansion of this mathematical development would demonstrate 

that a recursive method to include arbitrary degree and order of spherical 

harmonics can be developed. 

1.2.4.4 Decomposition of J2 into its Average Contribution 

One of the largest perturbations on any artificial satellite is caused by the 

oblate Earth. This effect is apparent when examining the zonal harmonic 

contributions to a satellite's orbit. The second harmonic, which describes the 

magnitude of the bulge around the Earth's equator, is the largest zonal effect 

on LEO satellite motion, two orders of magnitude larger than any other 

harmonic. This perturbation is extremely important when examining the 

orbit of satellite. 

From [10] the central body potential U acting at some distance r from the 

center of mass of the attracting body can be described as: 

53 



U(r,(j),if/) = ^ + ^f^(-)pnJsm(P)(Cnmco&mi{/ + Snmsmmy/) (1-50) 

where     r is the radial distance from the center of mass of the central 
body to the satellite 

(j) is the geocentric latitude 

y/ is the geographic longitude 

\i is the central body gravitational constant 

R is the central body mean equatorial radius 

Pnm is the associated Legendre function of order m and degree n 

Qm/ Snm are the geopotential coefficients 

M is the maximum order of geopotential field (M < N) 

N is the maximum degree of geopotential field 

The first term is the attraction caused by the Earth if it were perfectly 
spherical. This force is the largest single force acting on a satellite's motion. 
The rest of the potential will be referred to as the Disturbing Potential, as it 
disturbs the motion of the satellite from its Keplerian orbit. 

This analysis will only consider the Disturbing Potential of an axially 
symmetric Earth expanded to second degree (N=2, M=0). The Disturbing 
Potential then becomes: 

U(r,<j)) = ^(*) C2fiP20(sin<t>) (1-51) 

Equation 1-51 can be put into a more familiar form by specifying J2=-C2,0- 

Equation 1-51 then becomes: 

U(r,<t>) = -^J2(-) P2,o(sin0) (1-52) 

The next step involves applying the averaging operator to equation 1-52.   In 
order to do this some other definitions and expansions must be made.   From 
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[10]  the  function  sin0   can  be  put   into   equinoctial   elements  by   the 

transformation: 

sin0 = a cos L +ßsinL 

\ + p2+q2 l + p2+q2 
(1-53) 

where     p and q are the equinoctial elements describing the orientation 
of an elliptical orbit 

L is the true longitude 

Inserting Equation 1-53 into equation 1-52 gives: 

U(r,L) = -^J2(-\ P20(acosL +ßsinL) (1-54) 

The Modified Addition Formula  [10]  can then be used to expand the 

associated Legendre Polynomial. 

P20(acosL + /3sinL): 
-(a2 -ß2)cos2L + 3ccßsin2L 

+-(a2+ß2)-l 
2 

(1-55) 

Substituting equation 1-55 into 1-54 elaborates the J2 potential function in 

terms of the equinoctial elements. 

U(r,L) 
2 r    \r J 

-{a2 -ß2)cos2L + 3aßsin2L 

+l(a2-ß2)-l 
(1-56) 

With the potential function expressed completely in terms of the equinoctial 

elements, the averaging operator can then be applied. The averaged form of 

equation 1-56 results in equation 1-57: 
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77 1 A* U = - 
2 a? 

R2J, 

-{a -ß)—I  -   cos2L^A+—— J  —   sin2LdA 

t    2TI/    \3 /-> i    2;r/ 

+lf£2(ai+^_l[£ 
(1-57) 

The next step involves evaluating the integrals in equation 1-57. These 

integrals are elaborated in great detail in Cefola and Broucke, 1975 [10]. A 

special function, known as the Hansen coefficient, is the critical factor in the 

solution of the above integrals. For the zonal harmonics, the critical integrals 

are seen in equation 1-58. 

* in,  -n+1 

1    r( a 
- J - ]    cos(mL)dX = x2n-rB?Cm{k,h) 

.    2y     s"+1 

— f -      sm{mL)dX = x2n-lB?Sm{k,h) 
■ 7t{\rJ 

(1-58) 

where:    x = (l — h—k)2  where k and h   are equinoctial elements. 

5", = nlKW 
n+l 

(n + m)\xnem 

P™(x) is the associated Legendre Polynomial. 

Cm(k,h) = Re(k + jh)m Note that these are different from the 

Sm(k,h) = lm(k + jh)m  Cnm,Snm defined in equation 1-45. 

After using the Hansen coefficients to solve the integrals in equation 1-57 and 

further manipulation and simplification, the averaged potential for J2 can be 

evaluated in terms of equinoctial elements. 

56 



V = -l-±R2J, 
2 a3 

- (a2 - ß2 )x3B2C2(k,h) + (3ccß)x3B2S2 (k, h) 

+-(a2+ß2)x3-x3 
(1-59) 

Because we are interested in mean elements, the mean equinoctial VOP 

equations must be derived. These are listed in Danielson [8]. The mean VOP 
equations require the partial derivatives of the mean potential function with 
respect to the equinoctial elements. Lagrange's form of the VOP equations 
can be used because the zonal harmonics are a conservative perturbation. 
Finally, the J2 contribution to the averaged equations of motion is derived. 
This has been done analytically for the J2 disturbing potential and can be 
found in Danielson, Neta and Early, 1994 [8]. This completes the 
development of the averaged contribution of the J2 disturbing potential. It is 
obvious here that calculating the perturbative contribution to the potential 

functions in the VOP format is not a trivial process. 

1.3 Parallel Computing 

Livingston and Stout listed several motivations for parallel computing in the 
Supercomputing 92 conference [51]. 

• Many problems are inherently parallel, so parallel models fit these 

problems well. 
- Phvsical processes:   fluid flow, planetary orbit, nuclear reactions and 

plant growth 
- Social processes: wolf packs, assembly lines, ant colonies 
- Sensing / Learning / Intelligence: vision, artificial reality 

• Parallel computers are the only way achieve specific computational goals 
within a given amount of time. 

• Parallel computers can be the cheapest way to provide the necessary 
computational ability. 
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•   Parallel computers can provide fault tolerance. 

2.3.2   Previous availability 

The concept of parallel problem solving is not new to engineering. Many 
people often work together to solve the same problem. However, in order 
that more than one person can work on one problem together, it takes 
someone in charge directing the work. The same is true for computers. For 
more than one computer to work together on a problem, an additional 

process is required to hand out the work to the available processors. Of course 

this also means computers must be able to accept messages and communicate 
results with another processes. The extra work involved in setting up a 

distribution process and communicating with other processors has previously 

been very  difficult and computationally expensive. 

In 1980 Jeffrey Shaver investigated the application of parallel algorithms to 
the orbit determination process [14]. This thesis references Shaver's 
document as a way to compare how the past fifteen years of development 
have changed an engineers perspective on parallel computing. Of special 
interest is the change in the availability of parallel hardware and software in a 
typical engineering facility. 

The target architecture for the study completed by Shaver was a SIMD4 

machine. He was not, however, able to implement his algorithms on a SIMD 
machine due to many reasons. Computer time on such a machine was very 
expensive and software was not standard, so his target platform could not use 
the same software as his development platform. At that time, parallel 
computing was only accessible to those with a great deal of knowledge in 
computer science and parallel computing, working to solve enormous 
computation problems that were not possible on a serial machine. 

4SIMD parallel computers will be discussed in the next chapter. 
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2.3.2   Current Status 

More currently, a report on high performance computing by Horst Simon in 

December 1993 notes that all manufacturers of High Performance Computers 

have abandoned the SIMD architecture except for Masspar. He also points out 

that SIMD machines are very good in raw performance but can be very slow if 

the algorithms used are not 'completely parallel' [15]. SIMD use required 

implementation of algorithms of the complexity of that developed by Shaver. 

Such algorithms and machines would produce very fast execution times. 

However, by developing software for very specific hardware, such 

developments would not be cost effective for commercial or government 

applications interested in COTS (Commercial Off The Shelf) hardware and 

software. 

Many manufacturers continue to make very specialized machines, 

supercomputers, capable of enormous computing power. Almost all have 

gone to multi-processor systems. Some of the current manufacturers include 

Thinking Machines, Cray, IBM, Kendall Square Research, and Paragon. 

Although these machines far surpass the machines of just fifteen years ago, 

they are still very expensive and used for scientific and computing research. 

Parallel computing, however, has not been contained to such a small 

community. Workstations, computers typically found in most laboratories 

and universities making extensive use of computers, are now being offered 

with multi processing capability. These machines are not expensive; they are 

actually being purchased because the capability they provide is cheaper than 

comparable processing power available on separate machines. SUN 

corporation offers the following workstations at the prices shown in Table 1-5. 

Table 1-5: Workstation cost comparison5 [59] 

Workstation Description Cost 
SPARC 20/50 (Single Processor) $12,695 
SPARC 20/502 (Two Processors) $14,195 

5The computers come with a standard set of peripherals. Both computers listed here came with 
the same options except for the additional processor. 
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The availability of parallel computing does not stop there, however. 

Software, like the system used for this thesis, can turn several, single 

processor machines into a virtual multi-processor platform. These machines 

are readily available to most engineers developing computationally intensive 

applications. The software to allow the communication can be purchased at a 

reasonable price or even found as public domain, available at no charge. 

Additional software, however, must still be designed to take advantage of a 

multiprocessing system. 

2.3.3   Current use of Parallel Computing 

With low cost parallel computing available to a wide variety of users without 

requiring special training, parallel computing is quickly gaining popularity. 

At Draper Laboratory, much work is now being done in developing 

applications to run in a parallel environment [16]. Because the cost of an 

entirely new software development effort is so high, many older applications 

are being upgraded to work on newer systems rather than starting from the 

beginning. Flight dynamics systems, such as the type developed for 

RAD ARS AT, are adding functionality to their systems by using legacy 

software [46, 60]. Rather than adding more functionality to a single piece of 

software, old software is used 'as is'. New software must only be developed to 

interface between the applications [60]. In addition to making use of tested 

legacv software, such a system lends itself to a parallel computing 

environment; different processes can execute independently on different 

processors. 

1.4 Thesis Overview 

This document describes the development of a parallel version of the DSST, 

using the Parallel Virtual Machine (PVM) software package to support 

message handling between computers and processors. The parallel DSST 

(PVM/DSST) is then integrated with an optimization algorithm to help 

automate the orbit design process. Finally, both the propagator and the 

optimization tool are applied to the analysis and modification of a proposed 

840 satellite constellation. 
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Chapter two is an overview of parallel processing, presenting enough 

information to show how the design of the parallel orbit propagator was 

chosen, and what other options were available at this time. Chapter three 

goes on to describe the design of this orbit propagator based on the 

requirements for this software development and what methods were 

employed to ensure the software met the goals of project. Also presented are 

the speedup gains achieved using the parallel propagator and what could be 

expected with more machines. Chapter four discusses an application of the 

propagator to a proposed satellite constellation as well as its integration with 

an optimization algorithm. Chapter five discusses the conclusions and 

opportunities for future work in this area. 

The appendices supplement the thesis in a few specific areas. Appendix A 

describes the Keplerian and equinoctial element sets. Appendix B lists the 

important software developed in conjunction with this work. Appendix C 

describes the input data files used with the PVM/DSST. Finally, Appendix D 

describes how to execute the software from within Draper Laboratory. 
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2.0    Parallel Computing 

Effective software design requires an understanding of the target computing 
environment. Therefore, a study of parallel computing was necessary before 
designing and implementing the parallel orbit propagator. This chapter 

presents parallel computing concepts and the approaches that were available 
to the author at the time this project was initiated. One the most helpful 
sources for current information were the news groups available on the 
Internet. The two groups most often examined were comp.parallel.pvm and 

comp.parallel.mpi. 

2.1 Parallel Computing Concepts 

Parallel computing introduces new concepts that software designers must be 
aware of when developing applications. Without understanding these 
concepts and how they effect performance, applications may not achieve the 

desired speed-up. 

2.2.2   Definitions 

The terminology in this technical area is evolving over time so it is 
important to define several terms before continuing on in this chapter. 

basic block "A sequence of consecutive statements in which the flow of 
control enters at the beginning and leaves at the end without 
halt or possibility of branching except at the end [16]. " 

bandwidth Maximum rate of communication between processors. 
Normally expressed in MB/sec [51]. 

cache Information in a cache is correct and consistent, 

coherency 
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computer At least one processor, memory, and the hardware needed to 

operate the processor. A computer can have many processors. 

The terms computer and host are synonymous. 

processor A specific chip that has a defined instruction set.   This term is 

currently well defined, although the single chip is now 
performing more than one instruction at a time with 
techniques such as pipelining and very long instruction words 

[17]. The distinction between multi-processors and single 

processors will become more vague as single processors 
continue to perform more operations simultaneously. 

process For most programmers, a process is best understood as an 
executing program. A process, or job, is well defined in a 
UNIX1 operating system. A process can have more than one 
thread operating at the same time on more than one processor, 

using multi-threading techniques. 

thread An set of instructions that are executed in sequential order. A 
thread is also known as a lightweight process as threads do not 
have the overhead associated with a processes. 

network A system of connections and routers that allow computers to 

communicate. 

target Network,   processors,   routers,   operating   system,   and 
environment   programming    language    that    make    up    the    parallel 

environment where a program is executed. 

2.1.2     Measuring Performance of Parallel Algorithms 

Measuring performance of a parallel algorithm is critical to demonstrate the 
usefulness of working in a parallel environment. Without demonstrating 
performance, it is impossible to quantify the gain achieved in moving from a 

1   UNIX is a trademark of Bell Laboratories. 
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serial to a parallel environment. Additionally it is important to demonstrate 
effective use of the resources so that speed increases do not require excessive 
amounts of additional hardware. Finally, it is important to indicate how 
parallel algorithms scale to more processors. Algorithms may be designed for 
a limited number of machines so that additional speed increases can not be 

achieved by adding more processors. 

Two measures describing the effectiveness of a parallel algorithm are speedup 
and efficiency [18]. Speedup of an algorithm is described as [18]: 

S,(n) = l35> 
T

PW (2-1) 

where:    p is the number of processors 

n describes the problem size 

Tp is the execution time of the parallel algorithm on p processors 

T* is the time of execution of the best serial algorithm 

Sp is the speedup of the algorithm 

Efficiency of an algorithm is defined in [18]. It is used to describe how 
effectively all processors are being used. 

P       pTp(n) (2_2) 

where:    Ep is the efficiency of the algorithm on p processors 

2.1.3     Granularity and Communication Costs 

Granularity describes the amount of computation in a program segment that 
executes serially [72]. A very small grain size has more potential for 
parallelism but requires more communication and scheduling overhead [72]. 
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Therefore, when decomposing a problem for parallel applications, it is 
essential to ensure the granularity of the decomposition matches the target 
environment. If a fine-grain decomposition of a problem is performed so 
that the program is divided into many small pieces for execution, 
communication between many processors will be more frequent. If the 
problem exhibits coarse-grained parallelism, more computation will be 
performed on each processor before communication occurs. Parallel 

computing environments exist to solve both types of problems. Many 

designers of parallel computers have designed sophisticated networks and 

used relatively inexpensive, comparatively slow processors. Others have 

used simple networks with very capable individual processors. The tradeoff 

between fine grain problem decomposition and communication is depicted 

in Figure 2-1. 

Coarse Grain 
Decomposition Communication 

Multiple Processor 
System 

Unused 
Processors 

Fine Grain 
Decomposition Communication 

Multiple Processor 
System 

Higher Bandwidth and More Complex 
Communication 

Figure 2-1:  Fine and Coarse Grained Parallelism 

Applying equations 2-1 and 2-2 to the previous discussion on problem 
decomposition quantifies the advantages and disadvantages of coarse and 
finely grained parallelism.    A coarsely grained parallel algorithm limits 
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speedup.   This is demonstrated more clearly in Amdahl's Law, equation 2-3 

[18]. 

S(n) < < - 
" f + (l-f)/p    f (2-3) 
p 

where:    / is the fraction of the problem that is inherently sequential 

1-f is the fraction of the problem that is fully parallelizable 

A division of the problem in half, so that  / = —, limits the theoretical 

speedup to two. If communication and setup costs are added, even if they are 

minimal, the speedup will be reduced to below that amount. The efficiency 

of a coarse grained algorithm is relatively high, however, as a low ratio of 

communication and setup time to work means that the processors will be 

busy most of the time, so that efficiency will approach one. 

A fine grained decomposition allows speedup to be increased until all 

available processors are being used at the same time. However, many, small 

jobs will also increase the amount of communication required, as seen in 

Figure 2-1. If the network does not efficiently handle the communication, Tp 

will contain larger communication overhead, increasing pTpf and decreasing 

efficiency. Therefore, a decomposition that does not match the target 

environment, will increase speedup but will reduce efficiency. Far too much 

decomposition on a slow network could even translate into longer execution 

times, or reduced speedup. The tradeoffs between fine grain parallelism and 

coarse grained parallelism makes it difficult to efficiently match a single 

parallel model to a wide variety of target environments. 

In a real world situation, p is limited. However, it is always desirable for a 

parallel program to be 'scalable'. A scalable algorithm remains efficient as the 

number of processors available increases. A coarse grained decomposition 

could limit the maximum number of processors used. A poorly designed fine 

grained decomposition can reduce efficiency with a large number of 

processors. It is very difficult to predict how many processors will be available 
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to a user in the future, so the software will be useful for a longer time if it is 

scalable to an infinite number of processors. Figure 2-2 depicts how a typical 

parallel algorithm scales to more processors. The concept of linear speedup, 

or an efficiency equal to one, is also displayed on Figure 2-2. 

Linear Speedup 
(Theoretical) 

Speed-up 
Degraded Speedup 
(Actual) 

Number of Processors 

Figure 2-2: Speedup Vs Number of Processors [15] 

2.2.4   Levels of Abstraction 

Computers can be viewed from many different levels of abstraction. The 

highest level is seen by the programmer through high level programming 

languages. The programmer may have varying degrees of control based on 

the programming model (Sec 2.3.1). Below the high-level software is the 

compiler. The compiler interfaces the programming language to the 

operating system, changing high level commands into machine specific 

instructions. The operating system is responsible for directing the computers 

work, accessing data from a disk, and managing memory resources. The 

hardware, the actual pieces that make up the computer and how they are 

interconnected, make up the last level. Because parallel computers can be 

very complicated, describing the environment from these perspectives makes 

the entire system easier to understand. Figure 2-3 depicts the computing 

levels. 
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Programmer / High Level Programming Language 

Compiler 

Operating System 

Computer Hardware 
CPU, Memory, 

Interconnections 

Figure 2-3: Hierarchy of the Levels of Abstraction 

Viewing computers from the four levels also emphasizes the importance of 
the interfaces. High performance can only be attained if there is efficient 
communication between each of the levels of abstraction. This concept 
reemphasizes the necessity for a software designer to understand the target 
environment. 

Sections 2.2 and 2.3 describe parallel computers from the bottom up, omitting 
the operating system and compiler levels. These sections provide the 
understanding which will be necessary and required for developing effective 

parallel applications. 
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2.2 Parallel Hardware 

Parallel hardware, at the lowest level, starts on the computer's CPU. At the 

highest level, parallel computing involves multiple computers working 

together. This section will describe parallelism in computers starting with 

parallelism on the CPU. Much of this discussion references High 

Performance Computing by Kevin Dowd [17]. This text provides an excellent 
overview of parallel computing concepts and ideas. 

2.2.1    Computer Memory/ Basic Computer Architecture 

Memory is not one homogeneous area of a computer. Memory is divided 

into many layers, so that instructions and data can move as fast as possible 
from a storage area into the processing area. Access time to the memory 
closest to the processor is the fastest; the access time to the memory farthest 

from the processor is the slowest. Figure 2-4 depicts the memory structure of 
a basic computer. Not all computers fit this model exactly, especially as 

manufacturers continue to tune their computers to achieve the best 

performance. 

CPU 

Clock 
ft) 

55' 
r-t« 
rt> 
1-1 

ALU 

Network Resources 

Figure 2-4: Computer Memory Hierarchy [42, 52] 

Each of the units shown above is described in Table 2-1. 
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Table 2-1:  Description of Computer Components 

Unit Description 
Main Memory The area most commonly referred to as memory. All 

executing programs must reside here unless the computer 
is swapping to disk. Normally made up of dynamic RAM 
(DRAM) for cost reasons. 

Cache A smaller, fast memory unit that is normally off the CPU. 
Often made of static RAM (SRAM). 

Local Cache An intermediate memory unit generally located on the 
CPU. 

Registers Memory that loads information directly into the ALU. 
Clock The device that controls the rate at which all operations 

happen. 
Arithmetic Logical Unit 
(ALU) 

Unit that actually performs operations on the data. 

As described earlier, each memory unit is increasing in capacity but decreasing 

in speed from left to right in Figure 2-4. This is important as main memory 

access speeds are slower than the clock rate. If main memory was connected 

directly to the CPU, calculations would be limited by memory access speed 

[52]. Using a hierarchical structure allows a small amount of very high speed 

memory to keep the CPU busy. Instructions and data can then be loaded from 

memory into the cache, the cache into the local cache, the local cache into the 

registers, and the registers into the ALU. 

2.2.2   Parallel Computing on the Chip 

At the lowest level, parallel computing can take place on the CPU. 

Parallelism at this level can be achieved in many different ways. Multiple 

functional units can be added to the CPU to perform more than one 

instruction at the same time [52]. Functional units can be designed to perform 

specialized tasks, such as floating point operators. Multiple floating point 

units can be used at the same time, if more than one operation can be 

performed at the same time while insuring all calculations maintain 

coherency. This requires work by the compiler, to identify computer 

instructions that can be executed in parallel without corrupting other data 

[17]. An aware programmer can help the compiler by writing code which 

supports   parallel   instruction   execution.      A   programmer   supporting 
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parallelism on the CPU in the code design is an example of the relationship 

between levels described in Figure 2-3. 

Pipelining of instructions is a form of CPU level parallelism. Pipelining 

involves decomposing instructions into the stages that are involved in 

executing an instruction [17]. Stages can be executed one right after another, 

so that more than one instruction is being executed at the same time. An 

example pipeline from Dowd [17] assumes all commands are decomposed 

into five stages, as shown in Table 2-2. The number of stages is actually 

dependent on the computer type. 

Table 2-2: Example Stages of an Instruction 

Stage of Instruction Stage Description 
1 Instruction Fetch Fetching an instruction from 

memory 
2 Instruction Decode Decode or recognize the 

instruction 
3 Operand Fetch Fetch the necessary 

operands 
4 Execute Perform the instruction 
5 Writeback Place the results back into 

memory 

In a pipeline, instruction 1 is fetched into the beginning of the pipeline at 

time 0. At time 1, instruction 1 is decoded in the next stage of the pipeline 

while instruction 2 is fetched into the first stage. This is repeated until five 

instructions fill the five stage pipeline. All instructions move through the 

pipeline in lockstep [17]. If one of the stages of an instruction takes longer 

than just one step to complete, the rest of the pipeline is stalled. The 

processor must be very careful how it feeds the pipeline in order to achieve 

optimal performance [17]. 

There are more ways of exploiting parallelism on the CPU, especially as 

computer designers seek to make faster computers. The ones presented here 

are some of the most common and are used in the majority of modern day 

computers. The next section moves away from the CPU to exploiting 

parallelism among multiple CPUs. 
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2.2.3   Multiprocessor Memory Use 

The use of memory by multiple CPU computers (multiprocessors) defines 
their structure and is a common way to categorize multiprocessor 
environments. As shown in Figure 2-4, the term memory is most accurately 
portrayed as a series of layers. Multiprocessors can be categorized by the layer 
of memory the CPUs share for communication. In theory, multiprocessing 
machines could be placed into a continuum, from those that communicate at 
the cache level to those that communicate across the network or through the 
disk. In practice, two types of systems are commonly defined to describe 
different types of multiprocessors: those that share main memory (shared 
memory) and those that have their own main memory (distributed memory). 
As the technology continues to develop, machines are communicating 
through multiple layers, trying to reduce communication time. 

2.2.3.1  Shared Memory 

A shared memory system contains one large memory bank for the processors 
that intend to work together [17]. Shared memory systems have tremendous 
advantages in terms of speed of communication. By keeping all processors 
connected to the same system of memory, processes can quickly communicate 
by placing information in an area where another process knows to look. 
Figure 2-5 demonstrates how a shared memory system exchanges 
information. 
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Processor Processor 

Processor Processor 

Figure 2-5:  Conceptual Illustration of a Shared Memory Parallel Computer 

A shared memory system must be careful in reading and writing to memory. 

If the first processor updates a specific memory location in shared memory, 

followed by a read by the second processor, the second processor will retrieve 

the new value, even if it was expecting the old one. Therefore, if a processor 

writes to a data location it knows the other processors might look at, it must 

indicate to the others that it has written there. There are different protocols 

for maintaining data coherency. Additionally, a shared memory system 

cannot be easily expanded. One cannot just simply add another CPU to a 

shared memory environment, due to the complexity involved with more 

than one processor using the same physical memory. 

2.2.3.2 Distributed Memory 

Distributed memory multiprocessors allow each computer to have its own, 

private memory resources. Of course, the computer must communicate with 

the other computers in the group in order to exchange information between 

processors.  This is done by sending messages over a network.   Such systems 
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allow for tremendous flexibility in the design of an application. There is no 

chance that any computer will infringe on another's memory. Distributed 

memory systems do particularly well for applications requiring a large 

amount of computation for each basic block, or coarse grained parallelism. 

Figure 2-6 conceptually illustrates a distributed memory system. 

Network Connection 

Figure 2-6:  Conceptual Illustration of a Distributed Memory Parallel 

Computer 

Because computers may be physically separated and connected by a low 

bandwidth data connection, messages can require excessive time to transfer 

between processors. This problem is becoming less significant as 

communication links increase in bandwidth. As bandwidth increases, 

parallel computing becomes more feasible over a network of distributed 

machines. 

At Draper Laboratory, most machines are connected by ethernet connections. 

Some higher bandwidth connections, such as a Fiber Distributed Data 

Interconnect (FDDI) ring, are also used in less frequent cases. Figure 2-7 

illustrates the relative capacities of various communication networks and 

when these technologies became available [13]. 
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Figure 2-7: Network Capacities [13] 

Figure 2-7 demonstrates the future will continue to promise higher 

bandwidth connections between computers. 

2.2.4   Network Design 

A network allows multiple processors to communicate. Network design is a 

very complex subject and greatly influences performance of multiprocessors. 

Bertsekas lists several factors which are important to network performance 

[18]. 

Table 2-3:  Performance Metric Definitions for Network Topologies [18] 

METRIC DESCRIPTION 
Diameter The maximum distance between processors.   Distance is 

the minimum number of links that must be traversed. A 
link is a connection between two processors. 

Connectivity The number of independent paths between nodes. 

Flexibility The ability to emulate other topologies. 

Communication Delay in 
Standard Tasks 

The number of steps it takes to send the required 
information through the topology of interest. 
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The diameter is one of the most common metrics for classifying networks.  A 

small diameter means fast communication as messages will not be relayed 

through many other nodes before reaching their destination node.   The ideal 

network, in terms of diameter, would directly connect each processor to every 

other processor [18].  This concept does not scale well, however.   To connect 
N*(N-1) 

each processor to every other requires 2 connections or a very 

complex bus [17].   For four processors this networking scheme works well, 

requiring six total connections.    For 512 processors the total number of 

connections increases to   130,816 connections, which is too many connections 

for cost and complexity reasons. This type of network is known as a complete 

graph [18]. The network with the worst diameter is a linear array [18]. All the 

processors in this array are connected in a line so that each processor can only 

communicate with its nearest neighbors.   The same 512 processor machine 

would require only 511 connections on a linear array.  However, the diameter 

increases to 511.  A six node linear array and complete graph are depicted in 

Figure 2-8. 

Figure 2-8: A Six Node Linear Array and Complete Graph 

A common topology for networking multiple processors is a hypercube. 

Bertsekas describes the hypercube as "the set of points in d-dimensional 

spaces with each coordinate equal to zero or one [18]." Additionally, a 

hypercube is connected between "every two points differing in a single 

coordinate [18]." It easier to picture a hypercube if a bit address is assigned to 

each node or processor. The nodes that differ in exactly one bit are connected. 

A 3-d hypercube is shown in Figure 2-9. 
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Figure 2-9: A 3-d Hypercube 

There are many more topologies for connecting a network of processors. 

Table 2-4 lists several networks with P processors. The diameters, number of 

connections, and general advantages and disadvantages are also listed. 
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Table 2-4: Network Topologies [17,18, 71] 

Topology Diameter Number of 
Connections 

Advantages Disadvantages Example 
Machine 

Linear Array p-1 p-1 Simple to 
construct. 

Long latency 
associated 
with large 
diameters. 

N/A 

Ring (p)/2 P Up to twice 
as fast than 
the linear 
array for 
some 
operations. 

Diameter 
increasing 
linearly with 
the number of 
processors 
reduces 
scalability. 

KSR-1 

Binary 
Balanced 
Tree 

2*k wherekis 
the number of 
levels and 
2k<p<2M-l 

p-1 Low number 
of 
connections. 
Faster than 
linear array 
for some 
operations 

Low 
connectivity. 

CM-5 
(Actually 
uses a 
variant 
known as 
the 'Fat 
Tree' 
[71]) 

d 
dimension, 
mesh, edges 
not wrapped 

1=1 

where n< is the 
number of 
processors along 
the i   dimension 

Depends on 
dimension. 

Works well 
for problems 
tied to 
physical 
geometry. 

Can expand to 
a large number 
of 
connections. 

CM-2 
DliacIV 

Hypercube 
of dimension 
d and 
p = 2 

d or lo§2 P d* p 
2 

Scales well 
to a large 
number of 
processors. 
Very flexible 
topology. 

Can expand to 
a large number 
of 
connections. 

CM-2 
nCUBE 

Complete 
Graph 

1 p*{p-\) 
2 

Minimum 
diameter 
topology. 

Many 
connections 
required. 

N/A 

2.2.5   Flynn's Taxonomy 

In addition to network topologies, parallel computers can be categorized by 

their ability to use instruction and data parallelism [51]. Flynn's taxonomy 
assigns a four character designator to every parallel computer based on the 
computers capabilities. Table 2-5 describes Flynn's taxonomy [51]. 
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Table 2-5: Flynn's Taxonomy 

where: 

SI Single Instruction All processors are working in 'lockstep,' sharing 
one global clock and executing the same instruction 
at the same time. 

MI Multiple Instruction Processors are processing independently, with their 
own clock. 

SD Single Data All processors have the same data available at the 
same time. 

MD Multiple Data Processors may be using different data sets at the 
same time. 

Two different types of parallel computers, according to Flynn's chart, will be 

examined in the next two sections, SIMD and MIMD. The other two schemes, 

SISD and MISD, are rarely used for parallel computing designed to increase 

performance [51]. 

2.2.5.1 SIMD 

SIMD computers are composed of many distributed memory processors. The 

processors execute commands in Tockstep', all sharing the same clock [17]. 

This type of processing is known as synchronous execution [18]. A SIMD 

computer uses distributed memory. A simple loop is an example where such 

a machine would be very useful. Consider the following section of 

FORTRAN: 

DO   1=1,N 
Y(I)    =   Z(I)*2 

X(I)    =  Y(I) **4 

ENDDO 

If N was very large, this simple loop could require a significant amount of 

time. If a SIMD machine had N processors, the entire the loop calculation 

would be performed in one iteration on N machines, rather than N iterations 
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on one machine. One could imagine each computer doing the same 

calculation according to a global, shared clock [18]. At time t\r each processor 

would multiply Z(I) times two. At time *2, Y(I) would be raised to the fourth 

power. (Of course, each instruction is broken down into many smaller 

instructions by the compiler. These smaller instructions are actually the ones 

that are synchronized). Here I is not only the index of each array but also the 

processor number. If the computer had only N/2 processors, it would take 

the computer two times through the loop, plus the overhead. Obviously, 

these type of calculations would run very fast on a SIMD machine. 

2.2.5.2 MIMD 

MIMD systems differ from SIMD machines as each processor has its own 

clock. Each processor in a MIMD computer operates independently. There is 

no requirement of synchronization between processors; however, such 

synchronization can be imposed on the system if desired. MIMD computers 

can use either shared memory, distributed memory, or a combination of the 

two. 

Each processor in a MIMD machine is generally more powerful than that of a 

SIMD machine. With a MIMD computer, a programmer can send an entire 

section of work to be performed to an awaiting processor, which can then 

perform the work at its own pace. Even the work performed on each 

processor can be completely different. However, the same loop described 

above can also be implemented with a lesser degree of synchronization. Both 

loop steps can be performed on each of the processors and the results sent 

back to a central location, for example. Some processors may finish the two 

calculations earlier than others, so they will just be waiting until the last 

processor gets done before they begin the next job. Obviously, it is not 

desirable to have processors waiting for one another, so optimal 

implementation on a MIMD machine may require asynchronous algorithms. 

A distributed network of processors is a type of MIMD parallel processing 

computer. It would make little sense to impose an entirely synchronous 

process on such a system because of the difference in machine speeds, the 
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differing workload on each of the machines, and the high price of 

communication (in terms of time). 

2.3 Programming in a Parallel Environment 

Section 2.2 discussed the hardware inside a parallel computer. This section 
describes how the programmer interfaces with the hardware through the 

programming environment. The compiler and operating system levels of a 

parallel computer, mentioned in section 2.1.4, will not be discussed. The 

programmer should assume the operating system and compiler have been 

designed to achieve some performance out of the parallel computer. If the 

programmer gives all control of the parallelism to the compiler and the 
operating system, optimal performance cannot be guaranteed. 

2.3.2    Levels of Programmer Control 

Different programming models allow different degrees of execution control. 
More programmer control allows the engineer to specify which processors 
execute which pieces of software, how communication will take place, and 

when, in the course of program execution, each machine executes an 

instruction. This can be advantageous, especially when tuning software for 
minimum communication time and maximum performance. This type of 

model also requires much more detail out of the programmer. 

On the other hand, some models let the compiler divide up the work among 
the available processors. Programming within these models requires much 
less work. The algorithms used by the computer are not specified by the 
programmer. At the same time, the programmer loses the ability to tune 
algorithms for a particular application. The models that remove flexibility 
from the programmer limit the performance that can be attained from a 
parallel computing environment for a particular application. 

The next three sections discuss three different programming models. Figure 

2-10 displays these models as a continuum from minimum to maximum 

control. Sections 2.3.2 through 2.3.4 will also be addressed in this order. 
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Figure 2-10:  Continuum of User Control in Parallel Programming Models 

2.3.2   Data Parallel Model 

The data parallel programming model requires a data parallel language and 
data parallel compiler, as it is the compiler that distributes the work among 
the available processors. One of the most popular data parallel languages is 
FORTRAN 90 or HPF FORTRAN. These versions of FORTRAN are just 
now being used on a variety of machines. Compilers for these languages are 
still fairly expensive, as they are just being released. CM-FORTRAN is the 
data parallel language available on the Thinking Machines supercomputers 

and is very similar to FORTRAN 90. 

An example CM-FORTRAN statement that takes advantage of multiple 

processors can be seen below. 
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A=c* B+D 

where: A is a matrix size nxn 

B is a matrix size nxn 

c is a scalar 

D is a matrix size nxn 

Figure 2-11: Data Parallel Example 

This   statement   is   executed   using an algorithm for parallel matrix 

multiplication and matrix addition. The programmer did not know what 

algorithm was being used, specify how many processors to use, or which 

processors would do certain calculations. Obviously , this method of parallel 

computing makes programming simpler. Some new functionality is also 

added to a data parallel language to take advantage of the multi-processor 

environment.  Use of these features may require rework of serial algorithms. 

Although simpler to use, data parallel languages also have disadvantages at 

the current time.  These disadvantages include: 

• Compilers   must   be   purchased   for   each   class   of   multiprocessing 

environment 

• Software must be modified for each compiler (non-portable) 

• Inability  to effectively use old  (legacy)  software without significant 

modifications 

• Lack of user control 

2.3.3    Multi-Threading Models 

Multi-threading requires programmers to develop their own algorithms for 

parallel execution. Programmers must create and destroy threads to perform 

specific calculations. However, the programmer cannot specify which 

processor will execute a specific thread. 

Multi-threading has gained popularity, especially on symmetric multi- 

processing,  shared  memory platforms   [21].     The  term  multi-threading 
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indicates multiple threads of control in one process. It is easiest to 

understand multi-threading using the UNIX notion of process to describe 

what most programmers are used to as a single application occurring 

sequentially, or a single thread of control in every process. Multi-threading 

allows asynchronous process control within the same UNIX process [22]. 

Using multiple threads of control, a process can be doing more than one thing 

at the same time. The main advantage of multi-threading over message 

passing is that threads require less overhead than a UNIX process, thus 

switching between threads is requires less time than between UNIX processes. 

An example operation that can make effective use of multi-threaded process 

control is disk I/O [22]. If just one thread of control is allowed, a request for 

information from a disk will require a program to wait until the operating 

system can access the data. If multiple threads are used, several I/O accesses 

can be performed at the same time. If multiple processors are present, 

different threads can execute on different processors, although all threads are 

only seen by one process. A process could have many requests for I/O, each 

having a separate thread of control [22] 

Multi-threading is very similar to message passing in that a separate thread 

performs its work and returns its result so another thread can use it. 

However, the information that needs to be passed between threads is global to 

all the threads. Synchronization is slightly more difficult when developing a 

multi-threaded application as compared to message passing. 

2.3.4  Message Passing 

Most message passing environments allow complete programmer control as 

to which processor is performing which calculations. At the same time, this 

requires that the programmer specify all the control information, which can 

often be a complicated and cumbersome task. 

A message passing program which performs the program fragment described 

in Figure 2-11 is shown in Figure 2-12. The part titled master would be the 

controlling program.  This program has all the data, sends the data out to the 
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'slaves' numbered 1 through N, and then puts together their return. This is 

definitely not the best way to accomplish this task, especially as it assumes 

N=nxn processors are available and must send as much extra information as 

the information that is actually being used. Note that each slave must receive 

the indices as well as the numbers to be multiplied. The slaves will finish 

their work in a random order, thus returning the values to the master in a 

random order. To make sure the values get placed in the correct location, the 

slaves must receive their indices just to send them back with the answer. 

Master Slave Number (n*(i-l)+j) 
multicast(c) 
do i=l,n 

do j=l,n 
send((n*(i-l)+j),B(i,j)) 
send((n*(i-l)+j),D(i,j)) 
send((n*(i-l)+j), (n*(i-1)) : 
send((n*(i-l)+j),j)) 

end do 
end do 

do i=l,n 
do j=l,n 

receive(indexl) 
receive(index2) 
receive(a(indexl,index2)) 

end do 
end do 

receive(c) 

receive(b) 
receive(d) 
receive(indexl) 
receive(index2) 

a=b*c+d 

send(master,indexl) 
send(master,index2) 
send(master,a) 

Figure 2-12: Message Passing Example 

As can be seen, this program is written in standard FORTRAN 77 that must 

be linked with a message passing library. The commands from the message 

passing library are: 

multicast(value) 

send(slave,value) 

receive(value) 

Send value to all slaves 

Send value to slave 

Receive value from another process 

These commands are described here in a very generic way, but almost every 

message passing library contains these simple commands (some may not 

have a multicast command). 
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A comparison between Figure 2-11 and 2-12 shows the disadvantages of a 

message passing environment. As all parameters in a message passing 

environment must be specified, the problem becomes much more complex. 

However, there are some advantages of working in a message passing 

environment. 

• The algorithm used for dividing up the work can be specified by 

the programmer 

• A more standard language, such as FORTRAN or C, can be used 

• Legacy code can be more easily incorporated 

In the construction of the flight dynamics system for RADARSAT, Draper 

Laboratory chose a message passing approach to combine the functionality of 

legacy software [60]. Although the software was designed for one computer, 

using the message passing approach allowed legacy software to remain 

essentially unchanged. The new system was developed with much less effort 

than if the legacy software was combined into one program that incorporated 

the capability of the individual functions. 

2.4 Specific Approaches Considered for IPC 

(Interprocess Communication) 

Sections 2.2 and 2.3 described parallel programming hardware and 

programming environments. This background will be used to examine the 

options that were available for developing the parallel orbit propagator. 

2.4.2   Availability 

The previous section on parallel hardware, section 2.1, described how 

hardware is built to support communication between processors. The 

software paradigms describe different methods of developing software to 

perform the interprocess communication. With this level of understanding, 

several different methods of communication that were readily available to 

the author can be compared. 
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Table 2-6 lists all the different software packages considered together with a 

short description of the software. This list represents the software available to 

the author when development decisions were made. A more thorough list, 

containing descriptions of 70+ parallel software environments has been 

compiled by Louis Turcotte [24]. 

Table 2-6: Parallel Software Models Considered 

METHOD DESCRIPTION 
Data Parallel 

CM-FORTRAN Data parallel language available on the CM- 
5. Programming style very similar to 
FORTRAN 90. 

FORTRAN 90 Latest release of FORTRAN with data 
parallel constructs. Would need a new 
compiler for each machine to be developed 
on. 

Message Passing 
CMMD Message passing library on the CM-5. 
PVM Creates a virtual machine of several UNDX 

platforms. Portable to a variety of 
platforms. Available via anonymous ftp. 

MPI Message passing standard. Requires 
individual vendors to develop MPI libraries 
for their systems. 

Multi-Threading 
SOLARIS 2.3 Available at Draper Laboratory on a 

SPARCstation 20-514. Libraries are 
written to be included in C programs. 

POSLX Threads Attempt at a standard for multi-threading 
applications. 

Shared Memory 
Network Linda Similar to PVM but uses a virtual shared 

memory concept for communication. Users 
must purchase software. 

It should not be assumed the above are all options to solving the same 

problem. Two of the above items, MPI and POSIX Threads, are standards 

rather than specific systems. Because every vendor making a multi- 

processing system provides a different method for interprocess 

communication it is very difficult to design applications that will run on 

more than one platform. For each multi-processing platform a developer 

would have to change their application to interface with a particular system. 
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Standards describe interfaces for developing message passing and multi- 
threaded programs and leave it up to parallel environment developers to 
implement the interfaces between the standards and the underlying 
communication system. This concept can be seen more clearly in Figure 2-13. 

Programmer Application 

Standard Interface 

Figure 2-13:  Levels of Interfaces to Communication Systems 

In Figure 2-13, the programmer's application is not affected by the hardware 
specific communication system. The standard interface will have the same 
shape on the outside, despite the shape of the hardware system, so the 
application will 'fit' onto a variety of hardware systems. The hope is that by 
making standards, users will be more likely to develop parallel applications as 
they will be able to run them on a variety of platforms. 

Except for the standards, each implementation described above was developed 
by different people, requires different hardware, and does different jobs. The 
developer creating parallel applications will be provided with a different set 
of functionality and develop different software depending on the choice 
made. 

The above systems will be explained in further detail. As mentioned earlier, 
two attempts at this standardization include POSIX Threads and MPI, the 
Message Passing Interface. Information on MPI can be found in the book 
Using MPI [22] or in the MPI newsgroup comp.parallel.mpi. The POSIX 
Threads standard is a part of the IEEE standard for portable computing [23]. 
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2.4.2 FORTRAN 90 / HPF 

FORTRAN 90 is the latest release of the FORTRAN programming language. 

It is a super-set of the widely used FORTRAN 77 standard and also contains 
many functions that have been added in vendor specific versions of 
FORTRAN 77. High Performance FORTRAN is similar to FORTRAN 90 but 
is geared specifically toward parallel computing. Both languages contain 
constructs for using parallel processing as shown in the program fragment, 
figure 2-11. A FORTRAN 90 compiler must be purchased for each 
development platform a programmer wishes to use. Parallel applications 

developed in these languages, if compiled and run on a multi-processor 

system, could be made to take advantage of that system. CM FORTRAN is an 

example of such a system. It takes advantage of the processing power 

available on the CM-5 by separating the work onto the available processors. If 
a section of the code cannot be broken down to run on all available 
processors, it runs serially on one computer. 

2.4.3 CMMD 

CMMD is the message passing library on the CM-5, a parallel supercomputer 
at MIT's Laboratory for Computer Science (LCS). Although recently Thinking 
Machines filed for bankruptcy, Thinking Machines corporation was formerly 

one of the developers of leading edge, high performance, parallel computers. 
A Connection Machine 5E (CM-5) with 128 SuperSPARC processors was 
available to the author over the course of the research project as a part of 
project SCOUT, a nationally funded super-computing project. The CM-5 has 
many models available for parallel computing, including their own versions 
of the data parallel languages, CM-FORTRAN and C*. The message passing 
library on the Connection Machine is known as CMMD. This library allowed 
for communication between processes as described in Figure 2-6. Table 2-7 
describes some of the commands available within the CMMD message 
passing library, highlighting some of the atypical functionality present that 

can be useful to a programmer. 
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Table 2-7: Sample CMMD Functions [31] 

FUNCTION DESCRIPTION 
CMMD_send_block Send information to a 

specific processor. 
CMMD_swap Swap information between 

two processors. 
CMMD_sync_with_nodes Global synchronization 

between all processors. 
CMMD_scan_double Perform a scan on specified 

information i.e. add up all 
the values on each of the 
nodes. 

CMMD_open_send_channel Open a virtual channel 
between two nodes. Future 
sends of the same size to the 
same processor can be done 
with less overhead. 

CMMD_write_channel Write the information to an 
open virtual channel. 

CMMD provides many 'standard' message passing capabilities but also has 
many extras, especially those dealing with global operations and reducing 

communication overhead. 

2.4.4 PVM 

PVM (Parallel Virtual Machine) is a package of library routines and two 
executable programs that make a network of UNIX workstations into a single 
parallel virtual machine [13]. The two executable programs pvmd and pvm 
are described below: 

pvm The console program used to configure the virtual machine, 
show the status of the virtual machine and tasks, and aide with 
debugging. 

pvmd The daemon that controls the communication between hosts. 
Only one daemon runs on a host even if the host has multiple 
processors, in which case PVM uses the native message passing 
scheme developed for that particular multi-processor. 
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PVM allows users to develop applications in FORTRAN 77 or C and link 

with libraries that provide message passing capabilities similar to those 

available on the CM-5 using the CMMD libraries. One of the main 

advantages of PVM is that it is available via anonymous ftp, thus free of 

charge. Portability is also a strength of PVM, because the 'virtual machine' 

can be made up of a group of heterogeneous computers. Table 2-8 lists the 

platforms on which the current version of PVM, 3.3.7, can be used [30]. 
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Table 2-8: Platforms For Which PVM 3.3.7 is Available [30] 

AFX8 AlliantFX/8 
ALPHA DEC Alpha/OSF-1 
ALPHAMP DEC Alpha multiprocessor/OSF >= 3.0 
BAL Sequent Balance 
BFLY BBN Butterfly TC2000 
BSD386 80[34]86 running BSDI, 386BSD, NetBSD, 

FreeBSD 
CM2 Thinking Machines CM-2 Sun front 
CM5 Thinking Machines CM-5 
CNVX Convex using IEEE floating-point 
CNVXN Convex using native f.p. 
CRAY Cray 
CRAY2 Cray-2 
CRAYSMP Cray S-MP 
CSPP Convex Exemplar SPP 
DGAV Data General Aviion 
E88K Encore 88000 
HP300 HP 9000 68000 cpu 
HPPA HP 9000 PA-Risc 
I860 Intel RX Hypercube 
IPSC2 Intel IPSC/2 
KSR1 Kendall Square 
LINUX 80[34]86 running Linux 
MASPAR Maspar/Dec Mips front-end 
MIPS Mips 
NEXT NeXT 
PGON Intel Paragon 
PMAX DEC/Mips arch (3100, 5000, etc.) 
POWER4 IBM Power-4 
RS6K IBM/RS6000 
RT IBM/RT 
SCO 80[34]86 running SCO Unix 
SGI Silicon Graphics IRIS 
SGI 5 Silicon Graphics IRIS OS >= 5.0 
SGIMP Silicon Graphics IRIS multiprocessor with OS >= 

5.0 
SGI(>4 Silicon Graphics IRIS OS >= 6.0 
SGIMP64 Silicon Graphics IRIS multiprocessor with OS >= 

6.0 
SUN3 Sun 3 
SUN4 Sun 4, 4c, spare, etc. 
SUN4SOL2 Sun 4 running Solaris 
SUNMP Sun 4 multiprocessor 
SX3 NEC SX-3 
SYMM Sequent Symmetry 
TITN Stardent Titan 
UVAX DEC/Microvax 
UXPM Fujitsu running UXP/M 
VCM2 Thinking Machines CM-2 Vax front 
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Because it has gained such widespread use, help and discussion about PVM 

can found in the newsgroup comp.parallel.pvm. A full description of PVM, 

where to get it and how to develop PVM applications can be found in the 

book PVM [13]. 

2.4.5 MPI 

MPI, the Message Passing Interface, is a library of message passing routines. 

This library defines the programming environment. The implementations 

of the MPI library are left up to the vendors of multi-processing machines and 

the designers of software for parallel computing over a network of 

workstations. MPI promotes the development of complex parallel software 

by standardizing the interface to the programmer [21]. 

The MPI library was designed with the implementor as well as the 

programmer in mind [21]. The MPI standard includes many complex 

functions useful to the programmer. The library has also attempted to allow 

specialized parallel environments to achieve the highest level of 

performance. The goal of MPI was to achieve efficiency without sacrificing 

portability or functionality. [21]. 

Developing parallel software for an MPI environment has potential to be 

portable to a variety of platforms well into the future. There is no guarantee 

that this standard will become widely used, however. 

2.4.6   SOLARIS Threads 

A SPARC multiprocessor platform was recently purchased during the 

author's time at Draper Laboratory. The workstation purchased was a SPARC 

20-514, having four processors using shared memory [26]. A threads library 

for multi-threaded application development was provided with the operating 

system, SOLARIS 2.3 [22]. To the author's knowledge, no other method for 

parallel program development came with the multi-processing platform. 

Although a multi-threaded application differs from a message passing system, 
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as described in the previous section, some of the same functionality is 

available within both systems. 

The threads library available could only be used with the C programming 
language. No FORTRAN 77 library was readily available. POSIX threads 

were not available for this machine when the research was initiated. 

2.4.7 LINDA 

Network Linda creates a virtual bulletin board, known as tuple space [17]. 
Processors that have work to do post it on the bulletin board while processes 
that are ready to do work pull a tuple off the bulletin board and work on the 
tuple.   The processor then posts the results back on the board. 

Linda runs on a network of workstations. It's primary advantage is its ease of 
use. There are only six commands associated with Linda and the specifics of 
the sending the messages are removed from the application developer [25]. 

A full examination of Linda was not performed as a part of this review, as 
Network Linda is a proprietary product. However, much information was 
available on Network Linda in references [17], [24], and [25]. 

Each of the specific approaches to interprocess communication has inherent 
advantages and disadvantages. The impact of the approach used on the 

project goals is examined in Chapter 3. 
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3.0 A Parallel Semi-Analytic Satellite 
Propagator 

Chapter 3 describes the development of a parallel semianalytic orbit 

propagator. The parallel semianalytic orbit propagator combines an 

application architecture based on the PVM networking software with the 

Draper Semianalytic Satellite Theory (DSST). The resulting capability will be 

referred to as the PVM/DSST. 

3.1 Software Development Goals 

Developing the PVM/DSST first required identification of clear goals to guide 

the software development decisions. These goals originated from project 

requirements and years of experience in flight dynamics software 

development at Draper Laboratory. The goals are: 

Longevity 
Portability 
Simple Design and Interface 
Low startup costs 
Performance 

Each goal is detailed in Sections 3.1.1 through 3.1.4. 

3.1.1   Longevity 

Many complex software systems used for satellite flight dynamics have 

experienced a long lifetime [27]. Examples include: 

• DELTA NOPvAD space surveillance system operational from the 
mid 60's to approximately 1980. 

• AEOS A system used by the Air Force Space Control Facility 
(AFSCF) in Sunnyvale, CA. Developed in the late 1960s. 
Software was in use until the late 1980s. 

• GTDS Developed by the mid 1970s. Still used at the present 
time. 
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427M NORAD space surveillance system operational from 
approximately 1979 until the present time. 

TRACE Developed by the Aerospace Corporation in the late 1970s. 
Still used at the present time. 

These applications involve significant investments of time and money. Due 

to the cost and complexity of such flight dynamics systems, their useful 

lifetime has often been in excess of twenty years. 

Draper Laboratory has been developing Flight Dynamics systems since the late 

1970s under the direction of Dr. Paul Cefola [27]. The Goddard Trajectory and 

Determination System (GTDS) has been in use for the past twenty years [28]. 

Draper's version of GTDS is known as the Research and Development GTDS 

(R&D GTDS). 

Development of GTDS began at Goddard Space Flight Center in 1970 [28]. 

GTDS contains a versatile set of tools and algorithms to perform flight 

dynamics functions for space systems [28]. Although originally developed to 

run on an IBM mainframe, this system has also been successfully ported to a 

VAX/VMS workstation, UNIX workstations including SUN and SGI, and an 

IBM PC [29]1. The software has outlived the computers for which it was 

originally designed. As with GTDS, future software will continue to outlive 

the hardware; therefore new software developments should incorporate 

longevity into an application design. Longevity can be achieved in a number 

of ways including: 

• Maintain software to the most current versions of hardware and 
operating systems available so that updates to hardware and operating 
systems versions will require fewer software changes. 

• Develop a software system in a hardware environment predicted to 
have a long lifetime. 

1   The porting of GTDS to a VAX/VMS, SUN/UNIX, and SGI/UNIX took place at Draper 
Laboratory. The IBM PC version was done by Phillips Laboratory with support from Draper 
Laboratory. 
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• Develop software to a programming language standard predicted to 
have a long lifetime. 

In reality, a combination of the above three methods for incorporating 
longevity into an application will have to be used. Designers should consider 

longevity when making software decisions, however. 

Another important step to ensure a long lifetime is developing software 

under configuration management [78, 79, 80]. This allows future users to 
understand the updates that have taken place and encourage new 

development without fear of damaging the current system. 

3.1.2 Portability 

To be effective, software must be portable to variety of platforms. This 
requirement is closely tied with longevity. Software that is dependent on one 
platform will be ineffective once that platform is outdated. Portable software 
can also experience wider use, as more people can use the software without 
obtaining new resources. Finally, this requirement is necessary in developing 
a parallel application to execute on a network of heterogeneous workstations. 

3.2.3 Simple Design and Interface 

A new software application will not experience wide use if the interface is 
very complicated. The program flow and its capabilities must be 
understandable, flexible, and modifiable. Previous experience shows that a 
software system will be modified and expanded as requirements change. As 
computers go out of date, the software will have to be adapted to new 
architectures, which can be a tedious task if the software architecture is not 

easy to understand. 

3.2.4 Low Startup Costs 

Due to time limitations the PVM/DSST must not require excessive time to 
develop and test. To ensure this requirement is met, it will be very important 

to use as much legacy software as possible. This will also ensure that a 
valuable product is developed without re-inventing "the wheel". 
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3.1.5   Performance Increase 

The primary goal of the PVM/DSST is to increase the capability to analyze 
multiple satellites. Creating a parallel application allows the necessary 

computational requirements to be met without software changes, if the 
software takes advantage of the multiprocessor environment. More 

important than the actual performance in this analysis is the performance 

that can be attained by a theoretical system. Future users will undoubtedly 

have more and faster processors than were available during the time of 

development. By demonstrating what can be expected of the parallel 

propagator on the computers currently available, the type of computers 
required in the future can be scaled to meet the computational requirements. 

3.2 Software Design Process 

The propagation method was chosen from the beginning to be the DSST. The 
effectiveness of this method was thoroughly explained in Chapter 1. In 
addition, the algorithms and software were developed at Draper Laboratory 

and many experts who participated in the development were available to 

answer questions. Software had already been written to implement this orbit 
propagation theory, thus there was a significant amount of legacy software 

that could be used. 

3.2.1    Target Environment Selection 

The first decision made before designing a parallel version of the propagator 
was the selection of the target environment.   The options considered were: 

• Using the CM-5 at LCS exclusively 
• Using the four-processor SPARC 20-514 at Draper Laboratory. 
• Using a network of UNIX workstations at Draper Laboratory. 

Development on the CM-5 is advantageous due to the existence of a tested 

system of parallel programming libraries; therefore both data parallel and 
message passing approaches (Chapter 2) could be considered.    The four- 
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processor SPARC is equipped with a threads library, making it possible to 

develop a multi-threaded application. POSIX threads were not available to 

the author for this platform. In addition, a FORTRAN 90/HPF compiler 

could have been purchased for this platform, which could have been used in 

a data parallel approach. 

Developing on a network of workstations limited software to the message 

passing approach. One of the software packages described in Chapter 2 would 

be used to make a parallel computer from a heterogeneous collection of 

workstations. Several packages were readily available to promote this 

development, although the maturity of these packages was inferior to that of 

the CM-5. Only PVM was truly considered, as it was readily available (at no 

cost), it had already been successfully used at Draper Laboratory, and it was 

supported on the available workstations. Table 3-1 delineates the 

development options. 

Table 3-1: Development Options 

Hardware Parallel 
Programming 
Environment 

Associated 
Paradigm 

CM-5 CMMD 
CM-FORTRAN 
PVM 

Message Passing 
Data Parallel 
Message Passing 

SPARC 10-514 SOLARIS 
Threads 
FORTRAN-90 
PVM 

Multi-Threading 
Data Parallel 
Message Passing 

UNIX Cluster PVM Message Passing 

3.2.2 Chosen Design 

3.2.2.1 Paradigm Choice 

The first decision to be made was the paradigm to be used.  Table 3-2 outlines 

the impact of each paradigm on the  development goals. 
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Table 3-2: Impact of Paradigm Choice on Project Goals 

Goals Data Parallel Message 
Passing 

Multi- 
Threading 

Longevity Would expect 
wide use into 
the future. 

Would expect 
wide use into 
the future. 

Would expect 
wide use into 
the future. 

Portability Currently 
limited to 
machines 
with special 
compilers. 

All platforms 
available. 

Limited to 
multi- 
processor 
SPARC. 

Ease of Use Easy to 
program. 
Algorithms 
would have 
tobe 
redesigned. 

Difficult to 
program. 
Can use old 
algorithms 
depending on 
algorithm 
choice. 

Difficult to 
program. 
Algorithms 
would have 
to be re- 
written. 

Low Startup 
Cost 

Forced to 
redesign 
existing code 
parallelism. 

All legacy 
software can 
be used. 

Some legacy 
software can 
be used. 
Some 
sections must 
be rewritten. 

Performance Expected to be 
very good. 

Depends on 
match 
between 
granularity 
and 
hardware. 

Expected to be 
very good. 

As table 3-2 highlights, longevity is predicted to be sound for all three types of 
parallel programming, as they all experience wide usage and should continue 

to be supported well into the future. 

Because of the systems available, message passing is the most portable 
paradigm. PVM programs can be used on all three hardware systems. Thus 
PVM brought the portability to the message passing paradigm. Of course, if 
the CMMD Library was used for message passing, it would only work on the 
CM-5. 
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As Tables 2-11 and 2-12 pointed out, the data parallel model is the easiest to 

program. However, it would require rethinking many serial algorithms to 

create parallel operations. 

Message passing would have the lowest startup costs, as serial code can be 
used as is. Both multi-threading and data parallel paradigms require a change 

in existing code. 

Performance is the most difficult goal to compare against the paradigms. 
Performance is much more dependent on how the paradigm is implemented 

than on the paradigm itself. 

Because portability and low startup costs were key issues in the decision, 
message passing was the paradigm chosen. This choice allowed the quickest 
development of a usable product as the legacy software could be easily 

incorporated into the new system. 

3.2.2.2 Message Passing System 

PVM and CMMD were the options available for a message passing system. 
Although CMMD provided more functionality, PVM was chosen because of 
its portability. The target platform would be a network of loosely connected 
workstations within Draper Laboratory. As pointed out in Table 2-8, 
however, a PVM application would also work on the CM-5. Additionally, 
PVM provided the benefit of developing applications within Draper 
Laboratory, thereby allowing the author more access to the computers. 
Although CMMD provided more reliability and specialized functionality, the 
portability and accessibility of PVM made it the better choice for this 
application. 

MPI was not fully examined as it was fairly new at the time the decision was 
made and PVM provided the necessary portability. MPI would enhance 
longevity, however, as new message passing systems conform to the MPI 
standard.    This application can easily be updated to an MPI application by 
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changing the PVM function calls. A section of the MPI manual describes how 

to move PVM applications to MPI [21]. 

3.2.3 PVM and the DSST 

The target environment for this software was a loosely connected set of 
workstations, which complements a coarse grain decomposition of the 
problem. Although this limits speed-up, as demonstrated by Amdahl's Law 
(eq. 2-3) the communication costs across a network of workstations could be 
very expensive. Communication would be particularly expensive if there is a 
significant amount of other network traffic while the application is executing. 

3.2.4 Software Implementations of the DSST 

Before describing the new software designed, it is important to examine the 
legacy DSST code available for integration into the PVM/DSST. 

At Draper Laboratory, two implementations of the DSST already existed in 
tested software prior to this project's inception. One version was contained 
within GTDS; the other was a separate utility that consisted of only the 

propagator [32,61]. 

GTDS is controlled by files known as card deck inputs. A procedure that links 

the card deck, data files, and output files to the appropriate files sets up the 
environment for a GTDS run. The commands in the card deck are then 
executed by GTDS. A sample card deck that would propagate a satellite ahead 

five years is seen in Figure 3-1 [35]. 
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CONTROL   EPHEM TOPEXXX    XXXXXX 
EPOCH 950401.0 000000.000000 
ELEMENT1  3  6  1  7300.0OOO0O00OO0OD0 4.83000000000000E-4 65.9000000000000D0 
ELEMENT2 330.4000000000000D0 271.3000000000000DO 73.2000000000000DO 
OUTPUT   2  2  1  1000401.0 000000.0 31570560.0 
ORBTYPE   5  12  43200.0 1.0 
OGOPT 
SPSHPER   1 
SCPARAM 0.0001 1000 
ATMOSDEN        1 
DRAG      1        1.0 
MAXDEGEQ  1        21. 
MAXORDEQ  1        21. 
POTFIELD  1  4 
END 

Figure 3-1: Sample GTDS card deck [35] 

The other software implementation of the DSST existed autonomously in 

FORTRAN 77 code. This software, known as the stand-alone propagator, is 

described in the document by Early [32], as well as a study performed by 

Jablonski (Boelitz) [33]. This software was written to be portable, allowing the 

DSST to be implemented on a variety of platforms with various driver 

programs. Interface into the DSST was through four subroutine calls. Setup 

information and options are passed in through the argument list to the 

propagator, although many options are hard coded throughout the software. 

Because the stand-alone was completed much later than GTDS and written to 

be FORTRAN 77 compliant, the software is much easier to work with. 

The GTDS version of the DSST contained more functionality than the stand- 

alone, implying that a parallel GTDS could potentially accomplish more than 

satellite propagation. For this project, the GTDS benefits were outweighed by 

the ease of use of the stand-alone propagator. The GTDS system would 

require re-creation of the card decks to start the run. Also the output files did 

not easily lend themselves to multiple satellite data analysis. 

3.2.5   Software Design Considerations 

With the stand-alone propagator chosen as the basis for the orbit propagator 

and the PVM utility chosen for message passing, the top level software 

requirements were established. Table 3-3 describes the various software 

design approaches considered, ranked in order of respective granularity, from 

the finest grain algorithm considered to the coarsest. 
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Table 3-3: Advantages and Disadvantages of Approaches Considered 

General Concept Advantages Disadvantages 
1] Use a parallel 
numerical 
integration scheme. 

Speedup predicted in all 
types of processing. 

Fine grain 
parallelism is 
required. 

2] Calculate all mean 
elements, then use 
the results to 
calculate the short 
periodic 
contributions across 
multiple processors. 

Speedup increases with 
more processors as long 
as there are enough 
short periodic points to 
be evaluated. Could be 
valuable in a 
differential correction 
(DC) algorithm. 

Speedup only in 
evaluating short 
periodic elements. 
Limited by serial 
mean element 
generation. 

3] Propagate different 
satellites on different 
processors. 

Little communication 
overhead.  Can use 
some legacy software 
without modification. 

No speedup for just 
one satellite. 

The third concept in Table 3-3 was chosen for implementation because it best 

fit development goals.  The main advantages to this approach are: 

• No change required in the DSST algorithm which was already coded and 
tested 

• Coarse grained nature promised high work time/communication ratio. 

• Scalable to as many processors as desired as long as number of satellites 
to the number of processors ratio is high enough. 

The disadvantage of this design is that one satellite could not be propagated at 

a greater speed. The algorithm is only useful in propagating multiple 

satellites. 

The final design is a combination of all the limitations and goals discussed in 

Sections 3.1 and 3.2. The design is particularly useful in examining the long 

term evolution of multiple satellite constellations, a capability which is 

exploited in Chapter 4. 
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3.2.6 Load Balancing Methods for Parallel Computing 

Developing parallel algorithms on a heterogeneous group of processors 

presents a challenging load balancing problem. It is impossible to know the 

speed with which different processors will perform their work prior to the 

creation of the next task. On a dedicated, homogeneous system such as the 

CM-5, all processors can be assumed to work at nearly the same speed. The 

software can be designed to evenly apportion the tasks among the available 

processors. In a heterogeneous environment of workstations, many factors 

enter into how fast a processor will perform a desired task: 

• Clock speed of processor. 

• Processor architecture, i.e. RISC, CISC, pipelining, co-processors. 

• Load on processor. 

• Memory /Cache usage. 

• Physical location of disk and network traffic between processor and disk. 

If all task assignment is done before the computation begins, a computer 

heavily loaded with users might be given most of the work. All the other 

processors would have to wait until the heavily loaded computer finished its 

tasks. Even harder to predict, the path between the processor and the disk 

with the data files could be heavily loaded, increasing disk access time. To 

counterbalance these problems, a load balancing technique is used. 

There are many sophisticated ways to approach this problem. Some 

algorithms may periodically measure machine loads and distribute work 

based on a combination of machine capacity and load at that time. The 

'manager' could later redistribute work based on load averages or the 

performance of a particular machine. 

These algorithms can be very useful but may be difficult to implement. For 

this application, a much simpler but effective approach was taken. The 

balancing method used was known as the 'pool of tasks' algorithm [13]. The 

terms process and task are used in very specific ways in this discussion; 

therefore they should be clearly defined before continuing. 
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process An executing program on the CPU or in memory on a UNIX 
machine. 

task A job waiting to be executed by a process. 

In this distribution algorithm, all the tasks are controlled by a 'master' process. 
This process has all the information necessary to perform each task. To start, 

the master creates slave processes distributed among the virtual machine. 
More slave tasks can be assigned to faster machines, but PVM distributes the 
tasks evenly among the machines by default. The master process then sends 

out one task to each process. When a task is finished, the slave process will 

return a message to the master indicating that it is done as well as an ID. The 

master will then send this process the next task. 

In this way, the processors that work the fastest will do the most work. Once 
the master has sent out all the tasks, it waits for those tasks to be finished 
before continuing. The 'pool of tasks' distribution algorithm is depicted in 
Figure 3-2. 

Slave Process 
f  Distribution 

Manager 
Master Proces: y 

Slave Process 

Slave Process 

Figure 3-2:  The pool of tasks algorithm. 

This algorithm works most effectively when there is a high task-to-processor 
ratio. If there is only one task per processor, for example, the faster processors 
will be waiting while the slower processors finish their one job. 
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3.2.7   Programming Language Choice 

PVM is compatible with both FORTRAN 77 and C programming languages. 
The DSST stand-alone propagator was written in FORTRAN 77. To 
minimize the interface problems with the DSST, the additional code was also 
written in FORTRAN 77. C could have been used, but there are occasional 
difficulties in calling FORTRAN routines from C programs, not the least of 

which is the requirement of having two different compilers to create the one 

executable. FORTRAN 90, a superset of FORTRAN 77, would have been 
considered, but the lack of compilers limited portability. 

3.3 Software Description 

This section describes the software implementation of the design decisions 
described in Section 3.2. 

3.3.2   Top Level Software Design 

There are two different methods of writing the required software: keeping 
just one executable for the 'master' and 'slave' or dividing the code into two 
different executables. Keeping just one executable is also known as the 
'hostless' programming model; dividing the code into two executables is also 
known as the 'host-node' model. 

The hostless programming model is depicted in figure 3-3. 
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IF MASTER THEN 

r     Read     > 

Constellation 
.Information > 

Spawn Slaves 

Broadcast 
Constellation 
Information 

Send Out 
Work to 
Waiting 

Processes 

Kill Slave 
Processes 

ELSE SLAVE: 

Receive 
Broadcast 

Receive Send 
Work Wher 
 Done 

END IF 

Figure 3-3:  Program Flow for the Hostless Programming Model 

The software used the PVM function pvmfparentO to determine if a 
particular process was the master or slave. This function is not unique to 
PVM; most all message passing facilities have such a capability. If the process 
decides it is the master process, it creates several slave processes. It then 
continues to manage the tasks and slave processes.   Upon completion, the 
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master finally kills all its slaves before exiting. If a process decides it is a slave, 

it waits to receive data before beginning computation. 

The host-node programming model is depicted in figure 3-4. 

MASTER  EXECUTABLE     SLAVE EXECUTABLE 

r     Read     ^ 
Constellation 

. Information > 

Spawn Slaves 

Broadcast 
Constellation 
Information 

Send Out 
Work to 
Waiting 

Processes 

Kill Slave 
Processes 

Receive 
Broadcast 

Receive   Send 
Work      Wher 

Done 

Figure 3-4: Program Flow for the Host-Node Programming Model 

Dividing the code into two pieces made the project slightly more difficult to 

manage, but simplified the building process for the master. The master did 

not need to be linked with the functionality of the orbit propagator, making it 

a much smaller program than the slave executable. 

Keeping all functionality in one executable was easier to maintain when the 

software was being developed. Software changes in one function often 

required changes in the other. Once the software was developed and tested, 

dividing the software into two executables was more efficient; the master 

executable did not have to be linked with the DSST software. For the initial 

version of the PVM/DSST just one executable was created. When used with 

the optimization tool (Chapter 4) two executables were used. 

Ill 



Figure 3-5 depicts the overall structure of the parallel orbit propagator written 

using the hostless programming model. 

set_satopt 

fclavpl 
(slave) 

const_prop 

satjprop 

crrequest_times sort times 

Interface to DSST 
intanl 
beganl 
orbanl 

Figure 3-5:  PVM/DSST Structure with the Hostless Programming Model 

A more detailed program flow of the PVM/DSST is depicted in figure 3-6. 
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Read     ^ 
Constellation 
Information y 

v 
Slave Process 

Spawn 
Master Process 

Spawn  fc 
Slave Process 

Receive 
Broadcast 

Broadcast 
Constellation 
Information 

Receive 
Broadcast 

Send 
Receive When 
Work    Done 

Send Out 
Work to 
Waiting 

Processes 

Send 
Receive When 
Work    Done 

Kill Slave 
Processes 

const_prop 

sat jprop \ 

Master Process 

Slave Process 

sat_prop 

Interface between constjprop 
and sat jprop 

Figure 3-6: Flow of the parallel orbit propagator 

113 



3.3.2   Process Distribution Manager: constjprop 

The process distribution manager, constjprop (constellation propagator) 

creates multiple copies of itself across multiple processors. Each slave then 

calls the subroutine sat_prop. The subroutine satjprop, does not execute in 

parallel; it will have a single thread of control and proceed through the 

satellite propagation serially. The distribution manager uses the pool of tasks 

algorithm, discussed previously, to best distribute the jobs among the 

available processors. 

In creating constjprop, a decision had to be made as to which of the sat_prop 

variables would be specified to be the same across the entire constellation, a 

constellation global parameter, or specific to an individual satellite, a satellite 

local parameter. PVM provides a global broadcast capability for more efficient 

communication of one message to all processes. Additionally, a global 

message is only sent once at the beginning of a propagation run rather than 

with every satellite. Therefore, it is desirable to move as much data as 

possible into the constellation global parameters to reduce communication 

costs. All the necessary data and a description of each of the global and local 

data items is shown in Tables 3-4 and 3-5. 

Table 3-4: Constellation Global Data 

Data Item Description Name Given in const_prop 
Input File (Fig. 3-10) 

Number of Satellites Total Number of satellites in 
the constellation 

N Satellites 

Element Type Description of the input 
element set 

ElType 

Number of Intervals Number of time intervals 
through which the satellite 
is propagated. In each 
interval, an equal time step is 
used 

Nintervals 

Time Intervals Time of interval. Beginning 
Time, Ending Time, and a 
Timestep must be given for 
each interval 

Begin Interval 
End Interval 
Deltat 

Number of Burns Total number of burns Nburns 
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Table 3-5: Satellite Local Data 

Data Item Description Name Given in const_prop 
Input File (Fig. 3-10) 

Satellite Number Unique number identifying each 
satellite 

Satellite Number 

Epoch Time Time information given for the 
satellite's epoch date and time 

Epoch Date 
Epoch Time 

Satellite State The element set in either 
Keplerian or Equinoctial elements 

Equinoctial Elements or 
Keplerian Elements 

Coefficient of Drag Coefficient of drag CD 
Rho One The value of Rho Rho One 
Spacecraft Mass Mass of the spacecraft in kg S/C Mass 
Spacecraft Area Area of satellite that sees drag 

effects 
S/C Area 

Integrator Stepsize Step size used for numerical 
integration in seconds 

Integrator Step 

Retrograde Factor Retrograde factor for equinoctial 
elements 

Retro 

Atmospheric Model Describes which atmospheric 
model to use 

Atmos Mdl 

Potential Model The model for the spherical 
harmonics of the Earth 

Potent Mdl 

Maximum Degree Maximum degree of the central 
body spherical harmonic used in 
propagation 

Nmax 

Maximum Order Maximum order of the central 
body spherical harmonic used in 
propagation 

Mmax 

Central Body Zonal Harmonic 
Averaging Option 

Whether to use: 
1) Analytic Averaging 
2) Numerical Averaging 
3) Off 
method of averaging 

Izonal 

J2 Squared Effect Whether to include J2 squared 
effect 
1 - Yes 2 - No 

U2J2 

Maximum resonant order Maximum resonant order Nmaxrs 
Maximum resonant degree Maximum resonant degree Mmaxrs 
Third Body Perturbation Whether to use: 

1) Analytic Averaging 
2) Numerical Averaging 
3) Off 
method of averaging the third 
body contributions 

Ithird 

Atmospheric Drag Whether to include atmospheric 
drag 
1 - Yes 2 - No 

Ind Drg 

J2 Height Correction for Drag Whether to compute ISZAK's 
height correction for atmospheric 
drag 
1 - Yes 2 - No 

Iszak 

Solar Radiation Pressure Whether to include solar radiation 
pressure 
1 - Yes 2 - No 

Ind Sol 
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This division into constellation global and satellite local data was useful for 
the work predicted to be done during the author's time at Draper Laboratory. 

It may need to be changed in future applications. Both the propagator shell 

and the distribution manager will require code changes, which simply 

requires moving the send commands in the distribution manager between 

local and global positions in the program. Similarly, the receive commands 

at the top of the propagator shell will have to be moved between global and 
local positions.  These changes should be fairly straightforward. 

3.3.3 Propagator Shell:   sat_prop 

The propagator shell was designed to provide flexibility when used with a 
variety of applications. As described earlier, the stand-alone DSST legacy code 

was used for orbit propagation, and the propagator shell was designed around 

this software to implement the propagator. A previous implementation of 

the propagator was used as a starting point for the shell design. This shell, 
known as ORBIT_PROPAGATOR_SERVICES (OPS), was used by Draper 
Laboratory as a mean element propagator for maneuver planning purposes. 
It accepted a keyword and the necessary data for that keyword, and returned 
the values requested. This shell was written by David Carter at Draper 
Laboratory for the Landsat 6 project [34]. Much of the input information, 
however, was read in from a precision mean element file (PME file) and then 
loaded into the appropriate common block before implementing the 
propagator. Figure 3-7 describes the external interface to OPS. 

Output to 
Standard-Out 

Figure 3-7: External Interface to OPS. 
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To make the interface between sat_prop and other applications, such as 

const_prop, simpler, all options were passed in through the argument list. 

Data files were still necessary to run the orbit propagator, but the file 

describing the satellite and a few propagation options, the PME file in OPS, 

was removed.  Figure 3-8 describes the interface to sat_prop. 

Argument 
List 

sat_prop 

I 
File Output 

Figure 3-8:  External interface to satjprop. 

An additional change was made to the propagator shell to reduce the amount 

of data that would have to be sent from the master to each slave. Rather than 

specifying particular request times in seconds from epoch, an interval with a 

start time, stop time, and time step was used. Multiple intervals could be 

passed as well. This functionality turned out to be very valuable when using 

the propagator. 

The argument list to the subroutine satjprop became: 
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subroutine sat_prop(satno, eltype, nintervals, intervals, 
nburns, burn_list, satopt_int, satopt_dbl, 
outfile, indata_path) 

Table 3-6:  Argument Description for Subroutine sat_prop 

VARIABLE TYPE DESCRIPTION 
satno integer*4 Satellite number used to describe the output 

file. 
eltype integer*4 Integer flag describing the element set type. 

1 - Keplerian 
2 - Equinoctial 

nintervals integer*4 Number of intervals to propagate through. 
intervals real*8(5,*) Interval description. Five numbers per 

interval. 
1&2 - Begin Date and Time 
3&4 - End Date and Time 
5     - Time step 

nburns integer*4 Number of impulsive burns entered. 
burn_list real*8(4,*) Burn information. Four numbers per burn. 

1 - Burn time in seconds from epoch. 
2 - Tangential burn impulse (m/sec). 
3 - Normal burn impulse (m/sec). 
4 - Radial burn impulse (m/sec). 

satopt_int integer*4(*) List of integer options described in Table 3-5, 
satellite local data. 

satopt_dbl real*8(*) List of real*8 options described in Table 3-5, 
satellite local data. 

outfile character Output filename with path. 
indata_path character Full path of input files. 

The six necessary data files that are required in the new propagator design are 
seen in Table 3-7. 

Table 3-7: Data Files 

Name of File Description 
epotfld Earth potential models file 
jacdat Jacchia data for drag 

information 
slpl950 Solar, Lunar, Planetary 

ephemeris file in Mean of 
1950 coordinates 

slptod Same as above in GTDS true- 
of-date coordinates 

timecoef Timing coefficients file 
newcomb Newcomb operators file 
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There are several other integration options that are hardwired in sat_prop. 

These options are listed in Table 3-8. 

Table 3-8: Hardwired Propagator Options 

Option Variable Current State 
of Option 

Where The 
Option is Set 

Mean or osculating input elements. mean Mean input 
elements 

sat_prop 

True of reference or mean of 1950 input 
coordinate system 

mtod True of 
Reference 

sat_prop 

Direction of integration forward Forward sat_prop 

3.3.4   Modifications to the DSST 

The DSST stand-alone is a portable set of code, although a few changes were 

implemented when moving between platforms. Jablonski (Boelitz) [33] 

described how the DSST standalone could be used on a variety of platforms, 

including a VAX using VMS, IBM PC using DOS, a SUN SPARC station using 

UNIX, and an Apple Macintosh. Because the PVM/DSST software was built 

from the version of the DSST on the VAX/VMS and had to moved to a 

SPARC/UNIX environment, some small changes would have to be made. 

However, when developing parallel software that works in a heterogeneous 

environment, it is desirable to have one set of source code that compiles on 

multiple platforms. One set of source code is much easier to manage, 

especiallv when developing new software, as changes only have to be 

integrated in one version. 

The portability between platforms can be added without changing software by 

using a p re-processor [44]. Keywords are set that indicate the type of computer 

being used. This information is used by the computer to modify the software 

before it gets to the compiler, effectively rewriting the software for the 

particular platform. 

The compiler used was the SPARCompiler FORTRAN 3.0, available to all the 

SUN machines at Draper Laboratory. This compiler applied the C- 

Preprocessor (despite its name, this preprocessor can be used successfully with 

FORTRAN 77) to all FORTRAN files ending in extension .F, converting them 
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to .f files, which were then compiled [45]. According to Dowd [17], this 
method of applying the preprocessor to FORTRAN programs is becoming 

standard. The C-Preprocessor functions are described in many texts, including 

[69]. 

The first change to be implemented when moving from a VAX/VMS 

environment to a SPARC/UNIX environment was to modify the length of 

direct access records. In a VAX OPEN statement, the keyword RECL is equal 
to the number of bytes in the record divided by four. On a UNIX platform 

RECL equals the number of bytes. 

The preprocessor worked exceptionally well for this problem, providing code 
that worked on both a VAX/VMS and SPARC/UNIX platforms. This fix was 

made by adding the statements shown in Figure 3-9. 

>cat setdaf.F 
♦include "machine.h" 
# inelüde "array_si z es.h" 

SUBROUTINE SETDAF 

C     DEFINE FILE FOR SLP EPHEMERIS PERMANENT FILE 
C     DEFINE FILE 14 (2500,566,U,ID14) 

input_file = indata_path(1:i-1)//'slpl950' 
open(unit=14, 

1 form='unformatted', 
2 access='direct', 
3 recl=566*WORDLENGTH, 
4 file=input_file, 
5 status='old', 
6 readonly, 
7 shared) 

>cat ../include/machine.h 
#ifdef vax 
»define WORDLENGTH 1 
#endif 

#ifdef unix 
fdefine WORDLENGTH 4 
#endif 

Figure 3-9:  Preprocessor modifications 

At the user prompt, the command: 
{77 -c setdaf.F 

will first cause the C-preprocessor pass over setdaf.F before it sends it to the 
compiler.   The commands to the C-preprocessor all start with a # in the first 
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column. The preprocessor then looks for the file machine.h and 

array_sizes.h and expands them into the file, setdaf.F. Examining machine.h, 

the preprocessor then sees the conditional statements '#ifdef vax' or '#ifdef 

unix'. If the machine is a vax, the term 'vax' will be defined; similarly for the 

term 'unix' on a unix machine. Assuming a unix machine was being used, 

the statement inside this conditional will be evaluated. The #define 

command replaces its first argument with the second argument everywhere it 

sees exactly the first argument in the code. In this case, the term 

WORDLENGTH is replaced with 4, so the right value is calculated for the 

RECL keyword on a SPARC/UNIX processor. Direct access files were opened 

in two places in the DSST standalone / OPS software, the subroutines setdaf 

and satellite. This code will, in the future, work on both the VAX and the 

SUN. 

The other changes that had to be made included: 

• Change all block data filenames to the format '....bd.for'. The 

SPARCompiler would not take filenames that have the same name as the 

block data. With this change, the software will still work on the VAX. 

• The file error_handler.for contained many VAX specific routines. This 

file was not necessary for use in this project so it was commented out 

using the preprocessor. A VAX compilation would still make use of the 

error handler. 

• Get rid of the VAX/VMS specific calls such as 'OPEN(SYS$INPUT)' in 

OPS.  This was commented out using the preprocessor. 

3.3.5   Support Software 

Several other routines were also written to support this software effort. 

These routines are listed in Table 3-9. Listings of all software written is 

shown in Appendix B. 
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Table 3-9: List of Additional Software Developed 

Name of Subroutine Brief Description 
crrequest_times.F This subroutine converts a time range and 

interval into a list of times in seconds form epoch. 
outdat.F This subroutine writes the results of the 

propagation to disk. 
rdconst.F This subroutine reads the input file which 

contains the constellation data. 
set_satopt.F This subroutine assigns the values input through 

the argument list to the appropriate common 

block locations. 

sort_times.F This subroutine sorts the request times and burn 

times into increasing order. It also keeps track of 
which times were burns and which were requests 
for output. 

3.4 Validation of the PVM/DSST 

The job distribution logic and implementation was tested in two ways: 

• The program const_prop was run through a debugger to ensure the 

correct messages were sent and received at the appropriate times. 

• Use with the distribution manager produced the correct numerical 

v a lues when compared to previous implementations of the DSST. 

This implementation of the DSST was also validated in two ways. Results 

were first matched exactly to the test cases designed and used for verification 

of OPS in the Landsat 6 and Radarsat programs at Draper Laboratory. As the 

const_prop propagation software was the same as that used for OPS, these 

results should match to machine differences. Results were then compared 

with a GTDS semianalytic run. 
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3.4.2    Comparison to previous tests 

The Landsat 6 tests used for comparison included [43]: 

• State comparison after a four day coast 

• State comparison 10,000 seconds after epoch following a tangential 
burn 1000 seconds after epoch. 

The input file used to generate the four day coast in constjprop run is shown 

below, in Figure 3-10. 

N Satellites:   1 

nintervals:     1 ElType   2 
Begin interval  1 19821025.0  000000.0 
End   interval  1 19821031.0  0.00 
Deltat interval 1 86400.0 

nburns =       0 

0.0 Satellite Number:   1 Epoch Date: 19821025.0 Epoch Time: 

Equinoctial Elements : 0.7077636704480000D+04 
0.1564765048485586D-03 

-0.8653247687711026D-04 
-0.3 855720457066417D-01 
0.1154698444728130D+01 
0.2305550252000000D+03 

CD:                  2 00000000 Rho One: 0.00000000 
S/C Mass:         1675 80454500 S/C Area: 0.00001379 
Integrator Step: 43200 00000000 

Retro:      1 Atmos Mdl:   1  Potent Mdl:  2 
Nmax:     21 Mmax: 21  Izonal:     1 IJ2J2:   1 
Nmaxrs:    21 Mmaxrs: 21  Ithird:      1 
Ind Drg:    1 Iszak: 1  Ind Sol:     1 

Figure 3-10: Four day coast input file 

The first, or truth runs, were performed on a VAX station 4000-90 while the 
tests were run on a SPARC 20-514. The comparison of the results are shown 
in Table 3-10 and Table 3-11. 
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Table 3-10: Comparison of const_prop against Landsat 6 test cases 

after Four Day Coast 

Keplerian Element Landsat 6 (Truth) 
VAX/VMS 

const_prvp 
SUN/UNIX 

Absolute Difference 

Mean Semimajor Axis 
(km) 

7077.5976156445210 7077.5976156445200 1.00E-12 

Mean Eccentricity 0.0003643952697747 0.0003643952697747 0.00E+00 
Mean Inclination 
(deg) 

98.2450676985650 98.2450676985646 3.98E-13 

Mean Longitude of 
Ascending Node (deg) 

2.04663721378651 2.04663721378651 O.OOE+00 

Mean Argument of 
Perigee 

147.6042249337675 147.6042249337670 5.00E-13 

Mean Mean Anomaly 175.4197101690098 175.4197101689990 1.08E-11 

Table 3-11:  Comparison of const jprop 

Burn 1000 Seconds After Epoch and 

against Landsat 6 Test Case.  Impulsive 

Compare 10,000 Seconds After Epoch 

Keplerian Element Landsat 6 (Truth) 
VAX/VMS 

constjprop 
SUN/UNIX 

Absolute Difference 

Mean Semimajor Axis 
(km) 

7077.824590834495 7077.824590834480 1.5004E-11 

Mean Eccentricity 0.000156411702392 0.000156411702393 1.00e-15 
Mean Inclination 
(deg) 

98.24471614261371 98.24471614261360 1.10E-12 

Mean Longitude of 
Ascending Node (deg) 

358.2020530693879 358.2020530693870 9.00E-13 

Mean Argument of 
Perigee 

124.1159642833155 124.1159642832740 4.07E-11 

Mean Mean Anomaly 355.1142900226430 355.1142900226840 4.14E-11 

The differences in both tables are attributable to machine differences. 

Differences of the same order of magnitude are apparent in different versions 

ofGTDS[81]. 

3.4.2   Comparison to GTDS 

To validate the results of the PVM/DSST, a GTDS run was performed using 

the card deck in Figure 3-1. Both the GTDS and the PVM/DSST were 

executed on SPARC processors. This card deck gave results in mean elements 

only so it would match the default setup of the PVM/DSST.   The results of 
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this GTDS run, a five year EPHEM, are compared to the results of the 

const_prop results after five years. The input file used to generate the 

PVM/DSST run is shown in Figure 3-11. 

N Satellites:   1 Eltype 1 

nintervals:    1 
Begin interval  1 
End   interval  1 
Deltat interval 1 

19950401.0  0.0 
20000401.0  10.00 
31570559.82 

nburns =       0 

Satellite Number: 1  Epoch Date: 19950401.0  Epoch Time: 

Keplerian Elements: 0.730000000000000D+04 
0.483000000000000D-03 
0.659000000000000D+02 
0.33 0400000000000D+03 
0.2713 00000000000D+03 
0.732000000000000D+02 

CD:                  2.00000000 Rho One:         0.00000000 
S/C Mass:              1000.00 S/C Area:       0.00010000 
Integrator Step: 43200.00000000 

Retro:      1 Atmos Mdl:   1  Potent Mdl:  4 
Nmax:      21 Mmax:       21  Izonal:      1  IJ2J2:   1 
Nmaxrs:   21 Mmaxrs:    21  Ithird:     1 
Ind Drg:    1 Iszak:       1  Ind Sol:     2 

0.0 

Figure 3-11:  PVM/DSST Input File for Validation of Software 

The results, after five years, of both the GTDS and PVM/DSST test cases are 

shown in Keplerian Elements in Table 3-12. GTDS only outputs to 8 decimal 

places so the comparison was not made to the same precision as the 

comparison against the VAX/VMS OPS. 
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Table 3-12: Comparison of Results between GTDS and the PVM/DSST 

Keplerian Element GTDS Results PVM/DSST 
Results 

Difference 

Semimajor Axis 
(km) 

7289.671441 7289.671441 0.00 

Eccentricity 0.000306449787 0.000306449787 0.00 
Inclination (deg) 65.8961296 65.89961296 0.00 
Longitude of the 
Ascending Node 
(deg) 

14.54720186 14.54720186 0.00 

Argument of 
Perigee (deg) 

30.72517568 30.72517568 0.00 

Mean Anomaly 
(deg) 

20.02981688 20.02981683 5.0e-08 

Table 3-12 shows that the PVM/DSST matches GTDS to the accuracy shown 

in the output files. 

3.5 PVM/DSST Performance Analysis 

Performance is very difficult to measure. Benchmarking computers is an 
involved procedure and not of primary importance to this discussion. This 
section concentrates on the performance of the software designed, as opposed 
to an analysis of the hardware. To describe the results, however, a description 
of the hardware environment is necessary. The hardware environment 
description will be followed by a description of the performance tests and 
results. The last section draws conclusions about the software design based on 

the test results. 

3.5.2    Test Environment Description 

Four computers were involved in the performance testing of the software. 
The machines all belong to Draper Laboratory and are associated with the 
ACME Lab within Draper Laboratory. The four computers used are described 

in Table 3-11 [26]. 
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Table 3-13: Computer Description 

Computer Description 
wile-e SPARC ELC. 

SunOs 4.1.3 Operating System 
coyote SPARC 10-30 

SunOs 4.1.3 Operating System 
porky SPARC 20-61 

SunOs 4.1.3 Operating System 
petunia SPARC 20-514 

Four Processors using a shared 
memory system. SOLARIS 2.4 
Operating System. 

The connection between the computers is crucial to the amount of 

communication overhead, as described in Chapter 2. The computers are 

connected as shown in Figure 3-12. 

(   Petunia   J 

FDDI RING -f    Porky    j 

Other     ^_ 
Ethernet 
Connections 

Router c Wile-e 

Ethernet 

J 

(\az J ( Coyote  J 

Figure 3-12: Hardware Configuration 

The toaster is a network file server, and it contained the data files described in 

Table 3-6.    The executable programs and timing results were on a disk 
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connected to taz, a SPARC 20-61. Otherwise, taz was not used in the 

performance testing. 

The four computers were turned into fifteen different testing environments. 

Each system consisted of a combination of computers and test routines. This 

was done so test results could be easily associated with the correct system. The 

testing environments are described in Table 3-14. 

Table 3-14: Description of Systems Timed 

System Computer(s) Test 
Type 

1 Porky Serial 

2 Coyote Serial 

3 Wile-e Serial 

4 Porky Parallel 

5 Coyote Parallel 

6 Wile-e Parallel 

7 Porky-Coyote Parallel 

8 Porky-Wile-e Parallel 

9 Coyote-Wile-e Parallel 

10 Porky-Coyote-Wile-e Parallel 

11 Petunia with 1 slave tasks Parallel 

12 Petunia with 2 slave tasks Parallel 

13 Petunia with 3 slave tasks Parallel 

14 Petunia with 4 slave tasks Parallel 

15 Petunia Serial 

Two different types of tests were run for performance analysis. The parallel 

test used PVM and distributed the tasks among each system. The serial test 

was used to perform the same calculations without the PVM overhead and 

using only one processor. 

No system combining both the multiprocessor (petunia) and a single 

processor were timed as optimal process assignment on such a virtual 

machine would have required additional code. This mixed configuration was 

used for constellation analysis (Chapter 4). Additionally, the PVM 

implementation on the multi-processor platform was not bug free. Using the 

mixed configuration occasionally created problems. Problems with PVM are 

discussed more fully in Chapter 5. 
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Slight modifications were made to the programs const_prop and satjprop to 

facilitate performance testing. The version of satjprop was modified to 

become sat_opt, which was originally changed for constellation optimization. 

This program output the results of a cost function back through an argument 

list variable rather than writing a list of states to a file. Performance testing 

was more manageable using this version as no new files were created with 

each run. Similarly, the function const_prop was split into a master process, 

const_opt and its slave process const_opt_slave. These routines were created 

to run satjopt and made testing easier as const_opt accepted the number of 

processes created at one time as a parameter in the argument list. 

The program timing was used to time a test case on a particular configuration; 

timing passed the number of satellites to be propagated and the number of 

processes to create to the const_opt subroutine. The number of satellites was 

set as an UNIX environment variable, which could then be easily changed 

before running the program again [16]. The FORTRAN subroutine getenv 

was used to pass the information from the UNIX environment into the 

program. 

The subroutine const_opt then created the requested number of processes 

evenly across the virtual machine and began sending out the satellites to each 

const_opt_slave, until each of the requested satellites had been propagated. 

Figure 3-13 depicts the structure of the program timing. 
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Figure 3-13:  Structure of timing 
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For the timing results, the exact satellite was repeatedly propagated.   The 

input file for the test case is shown below, in Figure 3-14. 

N Satellites: 

nintervals: 
Begin interval 
End  interval 
Deltat interval 

nburns = 

ElType 1 

19950402.0 
19960401.0 
86400.0 

000000.0 
0.00 

Satellite Number:   1 Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements 0.7073140000000000D+04 
0.1173029490000000D-02 
0.9814200000000000D+02 
0.0000000000000OO0D+00 
0.9000000000000000D+02 
0.OOOO0O0OOOOOO0O0D+OO 

CD: 
S/C Mass: 
Integrator Step: 

0.00000000 Rho One: 
1.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00000000 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 Potent Mdl: 1 
0 Izonal: 1 
0 Ithird: 3 
2 Ind Sol: 2 

IJ2J2: 

Figure 3-14:  PVM/DSST Input File for Performance Testing 

For the serial test case, time_sat_opt, the PVM overhead was removed by- 
making calls directly to sat_opt for each satellite to be propagated. Figure 3- 

15 depicts the structure of the program time_sat_opt. 
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time_sat_opt 
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Figure 3-15:   Structure of time_sat_opt 

A script file automated the testing on a variety of configurations. An example 
script file used to time a constant number of satellites and vary the number of 

processes is shown in Figure 3-16. 
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#!/usr/local/bin/bash 
#This script executes the timing 
#test for testing the PVM/DSST 
#$1 is the system number 
#$2 is the number of slaves 

SYS=$1 
NSLAVES=$2 
export NSLAVES 

#Get the envrionment 
. ${HOME}/.UserLogin Path 
. ${HOME}/.UserLogin Variables 

export PVM_ARCH=*/Users/taz/scott/pvm3/lib/pvmgetarchv 

export PATH=${PATH} :$PVM_ROOT/bin/${PVM_ARCH} : $ { PVM_ROOT } /1 ib 

DIR=${HOME}/ccm_satUtil_db/TEMP_OPT,2.0/TEMP_OPT/timing_tests/ 

#Halt pvm 
pvm « EOF 
halt 
EOF 

#Clear tmp of pvm files 
rm -f /tmp/pvm*.10995 

#Start pvm with appropriate hostfile 
pvm ${DIR}/hostfiles/sys${SYS} « EOF 
quit 
EOF 

#Print current virtual machine configuration 
echo My system is ${SYS} 
pvm « EOF 
conf 
EOF 

#Run the test case 
for i in 1 2; 
#Create the filename 
do FILE=${DIR}/perfData/s${SYS}_~date '+%d%H%M%S'*.dat 
for j in 1 2 4 8 16 32 64 128 256; 

do export NSATS=${j}; 
#     echo 'Running Timing Test With '${NSATS}' satellite(s).'; 

ONE="timing' 
echo ${ONE} |awk '{print $3}' » ${FILE} 

done ; 
done 

#Halt pvm 
pvm « EOF 
halt 
EOF 

#Clear pvm tmp files 
rm -f /tmp/pvm*.10995 

Figure 3-16: Example script to perform timing tests 
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The UNIX script file was written with the help of Roseman and Beaupre 

[44,16]. Kernighan is an excellent reference for writing UNIX scripts [70]. The 
commands for starting and stopping of PVM were necessary for this script to 

be executed automatically by the UNIX cron utility. The utility cron executes 

any UNIX commands in crontab files on a regular basis, once per day at 5 PM, 
for example. The cron capability was especially important for timing tests as 
each test could then be run many times, at the same time every day to ensure 
consistency.  Figure 3-17 lists an example crontab file. 

30 23 * * * 
/Users/taz/scott/ccm_satUtil_db/TEMP_OPT/2.0/TEMP_OPT/timing_tests/parallel_time_test 5 1 ; 
/Users/taz/scott/ccm_satUtil_db/TEMP_OPT,2.0/TEMP_OPT/timing_tests/seriaLtime_test2; 
/Users/taz/scott/ccm_satUtil_db/TEMP_OPT,2.0/TEMP_OPT/timing_tests/parallel_time_test9 2 

Figure 3-17: Example crontab File 

Statistics were then compiled on the results, to increase the accuracy of the 
answers. All the timing tests were performed ten times and the average 

result was used for performance comparison. 

3.5.2   Serial Test Case 

The same satellite was propagated 1, 2, 4, 8, 16, 32, 64, 128, and 256 times for 
everv test. The serial test case was designed to demonstrate the overhead 
associated with creating a parallel program. This test case was also used to 
compare the relative speed of the systems described in Table 3-14 in executing 
the routine sat_opt. No conclusion is intended relative to the performance 
characteristics of a particular type of machine. The network configuration, 

the average load, and the setup of each of the computers adds many variables 
to the execution time. The intent was to compare the computers in their 
environment so more sense could be made out of the resulting parallel 

performance tests. 

The normalized value of one processor is defined in Equation 3-1. 
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p = 
Execution Time of Fastest Processor 

Execution Time of Processor of Interest 

(3-D 

Table 3-15 lists the average execution times for the entire serial test case (all 
511 satellites), and the normalized value of each processor. Each test case was 
run ten times. The average execution time and the standard deviation are 

listed in table 3-15. Because this was a serial test, the normalized value of 

petunia represents only one of its four-processors. 

Table 3-15: Serial Test Case Execution Times and Normalized Processor 
Values 

Machine 
Name / 
System 

Average Serial Test 
Case Execution Time 

(sec)   

Standard Deviation 
(sec) 

Normalized Value of 
One Processor (p*) 

porky / 1 594.04 11.10 1.00 
petunia / 15 783.95 19.85 0.76 

CO' vote / 2 1078.34 6.82 0.55 
wile-e / 3 2578.72 43.34 0.23 

When using a heterogeneous network of processors, the sum p* can be 
summed to calculate the total number of normalized processors in a virtual 
machine. This sum will take the place of p in Equation 2-2 used to calculate 

the efficiency of a parallel execution. 

3.5.3   Overhead 

Overhead is defined for these tests as the amount of work introduced by 
turning a serial application into a parallel application. To demonstrate the 
overhead created in developing the PVM/DSST, the serial execution times 
were compared to the parallel execution times, using only one computer. 
Systems four through six were compared to systems one through three, 
respectively. This test could not be successfully performed on petunia, as the 
computer will automatically distribute the master and slave tasks to different 
processors. No command existed within PVM to insure that processes were 
spawned on a particular processor within the multi-processing system. 
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The overhead is predicted to consist of two portions: a constant value, 

independent of the number of satellites propagated, and a value that increases 

linearly with number of satellites. The constant value originates from the 

time required to create a new process and enroll the processes in PVM. Each 

satellite directly corresponds to an additional message, so the time required to 

generate and send each message should appear to increase linearly with the 

number of satellites propagated. 

An additional metric used to demonstrate overhead is the efficiency of the 

one processor system (Eq. 2-2). The normalized value of each processor is 

then used to calculate the appropriate value for p. This ratio represents the 

performance loss in executing the test case on one processor as two separate 

communicating processes. When the efficiency is one, no overhead is 

introduced by sending messages. Ratios less than one indicate the time lost in 

overhead. The communication time for this test is very small, as all the 

communication will take place on one computer. However, the extra work 

involved in using PVM to create a new process and send information 

between processes is demonstrated. 

Figures 3-18 through 3-20 visually demonstrate the experimental results of 

the overhead tests. The first graph in each figure plots execution time vs. 

number of satellites. Both the serial and parallel execution times are shown. 

The second plot in each figure graphs the difference between the parallel and 

serial execution times. The times used are the mean times from the ten 

separate tests. Note that in all cases, the parallel execution took slightly 

longer than the serial execution on the same computer. 
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Figure 3-18:  Overhead Comparison: System 1 and System 4 

Total Execution Time 

• System 2 

■ System 5 

100 150 200 
Number of Satellites 

Difference in Execution Times 

100 150 200 
Number of Satellites 

Figure 3-19:  Overhead Comparison: System 2 and System 5. 
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Figure 3-20: Overhead Comparison: System 3 and System 6. 

Table 3-16 quantifies the overhead information in the previous three figures 

by giving the best-fit line to the second graph in each of the figures. These 

values describe the constant (satellite-independent) and satellite dependent 

costs associated with the PVM/DSST. 

Table 3-16:  Overhead Values per Machine 

Machine / System Overhead Constant 
(sec) 

Additional 
Overhead Cost / 
Satellite (sec/sat) 

Porky/1,4 0.3507 0.0174 
Coyote/2,5 0.4142 0.0294 
Wile-e/3,6 1.446 0.2144 

The efficiency (equation 2-2) on one processor also gives an indication of the 

overhead.  The normalized value of each processor is used for p. The 

efficiencies of the single machine cases are shown in Table 3-17. 
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Table 3-17: Efficiencies of the PVM/DSST on One Machine 

Machine / System Efficiency 
Porky/1,4 0.980 
Coyote/2,5 0.985 
Wile-e/3,6 0.956 

The efficiencies demonstrate the performance loss in propagating the same 

number of satellites with the PVM/DSST as compared to using time_sat_opt, 

which executes the DSST without the PVM overhead. 

The numbers shown in Table 3-17 only represent communication between 

processes on the same machine; therefore, messages sent between different 

machines will have a higher overhead and lower efficiencies. The amount 

of work done on each satellite, the granularity, will also impact the overhead. 

Whether or not overhead has a significant impact on performance depends 

on the exact application of the PVM/DSST. The results for this test case 

showed that the PVM/DSST worked very well. Very little setup time is 

required in comparison to the time required for computation. Because there 

are many variables affecting performance, it is difficult to generalize these 

positive results to other applications or other environments. The results do 

show PVM has the potential to develop effective distributed applications. 

3.5.4   Speed-Up and Efficiency 

Speed-up and efficiency of a parallel algorithm are defined in equations 2-1 

and 2-2. Table 3-15 was used to determine the normalized processor value for 

a network of heterogeneous workstations. This value was used to calculate 

the efficiency across a network of heterogeneous processors. Efficiencies equal 

to one demonstrate the best possible performance (indicates that no 

processing time was lost to communication or other overhead). 

As the PVM/DSST on one processor showed overhead (Section 3.5.3), 

computation across multiple processors will introduce even larger overheads 

resulting in lower efficiencies.   Systems 11 through 14, which only use the 
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multi-processor platform, will have lower communication times but are also 
sharing resources, so the efficiencies are difficult to predict. 

Figures 3-21 and 3-22 give a qualitative measure of the relative speed-up of 

the parallel systems. The mean execution time vs. the number of satellites is 

plotted in both figures. 
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Figure 3-21:  Execution times vs. number of satellites for systems 7-10 
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Figure 3-22: Execution times vs. number of satellites for systems 11-14 

Figures 3-21 and 3-22 demonstrate that using a network of computers 

decreases execution time. Multiple processors are effectively used to speed up 

the execution. 

In addition, the small speed increase in going from system 13 to system 14 in 

figure 3-21 indicates that the multiprocessing platform, petunia, moved the 

master process to an unloaded CPU. Systems 11 through 13 spawned fewer 

tasks than the number of processors available. The master task then 

proceeded to run on an unloaded CPU. System 14 spawned as many slave 

tasks as there are processors, so the master process shared a CPU with the 

slave task. Therefore the resulting difference between systems 13 and 14 is 

not proportional to the difference between 11 and 12. 

To quantify the gain achieved, equations 2-1 and 2-2 are applied to the results 

shown in figures 3-21 and 3-22. Using the normalized value of processors to 

calculate p (Table 3-15), speed-up and efficiency are calculated. Systems 11 

through 13 could not be shown, however, because the correct value of p could 
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not be calculated. Because petunia automatically spread its work among the 

available processors, p can only be calculated if the entire machine is used. 

The speed-up and efficiency results are presented in Table 3-18 and in Figures 

3-23 and 3-24. 

Table 3-18: Speed-up and efficiency of the PVM/DSST 

System 
Niunber 

Normalized 
Value of 
System 

Speedup 
(Compared to 
System 1) 

Efficiency 

7 1.55 1.50 0.9678 
8 1.23 1.16 0.9432 
9 0.78 0.751 0.9606 
10 1.78 1.70 0.9564 
11 0.76 NA NA 
12 1.52 NA NA 

13 2.28 NA NA 

14 3.04 2.39 0.7874 
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Figure 3-23: Actual Speed-up 
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Figure 3-24: Efficiency 

3.5.5    Performance Conclusions 

The PVM/DSST worked well for the test case. Communication overhead 

affected the performance as predicted. The overall effect of communication 

was relatively small compared to the potential gain. Speed-up and efficiency 

showed that the algorithm worked exceptionally well for the distributed 

network. A comparison between tables 3-18 and 3-17 show a small decrease in 

efficiency in moving from one machine to a distributed processing 

environment, as would be expected. 

Figures 3-23 and 3-24 show that the multi-processing system did not perform 

as well as expected, however. The multi-processing platform had lower 

efficiency than any of the distributed systems, despite the requirement for 

network communication on a distributed processing system. The most likely 

reasons for the degraded efficiency on the four-processor machine include: 

•   The work required to manage the shared resources reduced the effective 
CPU available. 
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• The shared resources caused parts of the application to be 'serialized'. 
Memory writes, for example, are sequentialized because two processors 
cannot write at the same time [53]. 

• The system has not been correctly tuned for performance. 

• The PVM interface to the native communication system degrades 
performance. 

The efficiency decrease in the four-processor machine was not predicted but 

is understandable. This machine must perform extra work to manage the 

four-processors competing for common resources. It is impossible from 
these series of tests to deduce exactly what caused the reduced efficiency. 

Figure 3-23 shows that the speed-up appears to degrade as more processors 
are added. However, the only point showing significant loss in speed-up is 
the four-processor machine. If more distributed machines were added to the 
computing environment, speed-up should not decrease significantly, to a 

point. Eventually too many machines will saturate the network and 
overload the pvmd's. At this point, the management and communication 

requirements of an additional task will require more work than the benefit 
of adding a new machine. Not enough machines were available to approach 

this performance limit, however. For a limited number of machines, this 
algorithm will continue to scale well if the size of the problem is large 
enough. 
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4.0    Satellite Constellation Design 

The PVM/DSST (Chapter 3) employs a network of computers to make 

multiple satellite orbit propagation efficient and practical. Combining the 

PVM/DSST with an optimization algorithm provides a powerful orbit design 

tool which is easily applied to satellite constellations. This chapter discusses 

constellation design, the integration of a genetic algorithm (GA) optimization 

method with the PVM/DSST, and an example application of the 

optimization tool to the Teledesic satellite constellation. 

The constellation design problem has been addressed by many engineers. 

Walker has presented perhaps the most well-known descriptions of the 

problem and possible solutions [56]. Other authors have presented studies on 

designing orbits and constellations [57,58]. These studies have looked at 

designing constellations to maximize performance characteristics based on 

the geometry of the initial constellation and the dynamics of orbital motion. 

The goal of this study is to refine and automate a portion of the constellation 

design process so that an initial orbit can be chosen to better meet system 

requirements in the presence of orbital perturbations. This addition to the 

design process should help the engineer develop more effective satellite 

constellations. 

Section 4.1 describes the constellation design problem and metrics used to 

evaluate satellite constellations. Section 4.2 goes on to discuss the orbit 

optimization tool, which is used in Section 4.3 to automate frozen orbit 

selection. Finally, Section 4.4 demonstrates the capabilities of the orbit 

optimization tool in performing an analysis of the Teledesic orbit. 

4.1 Design of Homogeneous Satellite Constellations 

"The design of a system represents a decision about how resources should be 

transformed to meet some objectives [54]." Satellite orbits are designed to 

meet specific requirements.    Requirements are balanced to meet mission 
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objectives.  The sun-synchronous orbit described in section 1.2.4 is an example 

of an orbit designed to meet specific objectives. 

Larson and Wertz present a checklist for orbit design, acknowledging that 

orbit design has no "absolute rules [55]." The checklist is shown in figure 4-1. 

1. Establish orbit types 

2. Establish orbit-related mission requirements 

3. Assess applicability of specialized orbits 

4. Evaluate a single satellite vs. a constellation 

5. Do mission orbit design trades 

6. Assess launch and retrieval or disposal options 

7. Evaluate constellation growth and replenishment 

8. Create AV budget 

9. Document orbit parameters, selection criteria, and allowed ranges 

10. Iterate as needed 

Figure 4-1: "Checklist " for Orbit / Constellation Design [55] 

A satellite constellation is normally used instead of a single satellite when 

coverage over the Earth is the key criteria in the system design [55]. The term 

'coverage' describes how often a satellite system can be accessed from the 

ground. Because coverage is important to constellations, coverage can be 

used as a measurement of the performance of a satellite constellation. 

Therefore, the ability of satellite constellations to provide Earth coverage is an 

important metric for constellation evaluation. 

4.1.1    Satellite Communication Systems 

Communication systems use satellite constellations for their ability to 

provide access to some or all of the entire Earth. The most recent proposals, 

specifically the systems mentioned in Figure 1-1, plan to use constellations to 

provide continuous and worldwide access to communication and data. 

These systems are of primary interest in this description. 
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4.1.1.1   Requirements of Communication Satellites 

There are two requirements for establishing a communication link between a 

satellite and a ground user: 

• The ground user has a line of sight view to the satellite. 

• The communications link between the satellite and the ground has the 

appropriate signal to noise ratio. 

Signal to noise ratios are calculated using a link budget [2]. Both Gordon [2] 

and Agrawal [3] thoroughly discuss link budgets for communication satellites. 

Elevation angles, described in Section 4.1.1.2, determine whether the user has 

a line-of-sight connection to the satellite. In addition, elevation angles 

indirectly enter into the link budget calculation. 

The recently proposed satellite constellations for mobile communications 

must maintain a minimum elevation angle above the Earth's surface to 

ensure users will always have communication access. A minimum elevation 

angle is required for a particular communication system because: 

• Distance from the ground to the satellite increases as elevation angles 
decrease. 

• Obstructions on the horizon prevent a line of sight connection to the 
satellites. 

• Antenna orientation may favor higher elevation angles. 

• Atmospheric interference is greater at low elevation angles. 

Because the GPCS communication satellites are interested in continuous, 

worldwide coverage, the minimum elevation angles over the entire Earth for 

a period of time are of interest. Many metrics can be used to analyze 

constellations.   These metrics include: 
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Metric Description 

Coverage Percent of time above the minimum 

necessary elevation angle for a 

selection of grid points. 

Maximum Coverage Gap [55] The longest length of time a point on 
the Earth is below the minimum 
elevation angle. 

Mean Coverage Gap [55] Average length of time a point on 
the Earth is below the minimum 

elevation angle. 

Minimum Elevation Angle The minimum elevation angle at 

any time for a point on the Earth. 

Although all of these metrics are important for constellation design, only the 
minimum elevation angle metric was used to examine the effects of 

perturbations on constellations. 

Calculation of the elevation angles and the minimum elevation angle 
constellation design metric is discussed in the next section. 

4.1.1.2  Elevation Angles 

The elevation angle (E) is measured from the projection of the station-to- 
spacecraft vector on the local tangent plane to the vector itself. This angle is 
positive when the spacecraft is above the horizon [49]. Figure 4-2 depicts the 
geometry of the elevation angle. 
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Figure 4-2:  Elevation Angle Calculation 

where:    F and F* are the foci of the reference ellipsoid. 

C is the center of the reference ellipsoid (the geocenter). 

S is the instantaneous position of the satellite. 

P is the location of a point on the Earth's surface. 

E is the elevation angle. 

d is the vector from the equatorial plane to the normal to the 
surface of the reference ellipsoid passing through point P. 

D is the acute angle between the equatorial plane and the vector 
d (geodetic latitude). 

p is the vector from P to S. 

xp is the projection of the vector p on the local tangent. 

yp is the projection of the vector p on the unit vector normal to 
the      local tangent. 

Practical calculation of the elevation angle uses the spherical Earth 

assumption. The errors introduced into the elevation angle calculation as a 

result of this assumption are discussed in Section 4.4.3. The geometry of the 

elevation angle on a spherical Earth is shown in figure 4-3. 
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Figure 4-3:  Elevation Angle Calculation using the Spherical Earth 

Assumption 

From the above picture, the elevation angle E is 90° minus the angle between 

d and p. Equation 4-1 describes the calculation of the angle E. 

17        K 
E = arccos 

2 
p»d 

w. 
(4-1) 

The elevation angle calculated by equation 4-1 solves for an elevation angle at 

one time at one point over the Earth. As the satellite constellations are 

interested in continuous coverage over the entire Earth, the same calculation 

must be performed for a grid latitude and longitude of points over a period of 

time. The minimum elevation angle metric is calculated with the following 

algorithm: 
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For each time DO 

For each grid point DO 
Calculate the elevation angle to each satellite. 
Keep the largest elevation angle 

End DO 

Keep the smallest elevation angle for each grid point and all times 

calculated. 

End DO 

However, due to the satellite and ground station dynamics, a numerical 
minimum elevation plot can definitively calculate only the upper bound of 
the minimum elevation angle at each grid point. With a numerical 
evaluation, the claim can be made that the minimum elevation angle is at 
least this small. In addition, the values calculated are only valid for each time 
step and each grid point, not for the time span and the area of the grid points. 

To make use of the minimum elevation angle metric for constellation 
design, the maximum errors must be estimated. Section 4.4.3 quantifies the 
errors introduced in creating minimum elevation plots. 

4.2 Orbit Optimization Design Tool 

The minimum elevation metric described in Section 4.1 is one way to 
measure the effectiveness of a satellite constellation. With a performance 
metric established, an optimization method can be used to design a 
constellation that best satisfies the metric. This section describes the 
development of the orbit optimization tool, which couples the PVM/DSST 
with a genetic algorithm (GA) optimization method, designed and 
implemented by Schott [64]. 
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4.2.2    Genetic Algorithm Optimization Method- 

Two definitions are necessary before continuing in this section: 

cost function    The function to be minimized. 

parameters Variables that the GA modifies to find the minimal cost 

function. There must be some relationship between the 

parameters and the cost function, but the relationship may not 

be analytically defined. 

A genetic algorithm optimization method was chosen for this optimization 

problem because: 

• GA's only require parameter ranges and a cost function.   No derivative 

information is necessary. 

• GA's provide a good global answer to the optimization problem. Global is 

defined as the parameter space. 

• GA's can make use of parallel cost function evaluations. 

• Ongoing work at Draper by Schott [64] and Schor [65] provided an excellent 

source of expertise in the use of GA's. 

A well known reference on the GA optimization method is Goldberg [63]. 

Forrest [68] presents a brief overview of GA's : 

"The basic idea of a genetic algorithm is very simple. First, a population of 

individuals is created in a computer (typically stored as binary strings in the 

computers memory), and then the population is evolved with use of the 

principles of variation, selection, and inheritance." 

For the GA used in the orbit optimization tool, each member of the 

population represents a different combination of initial orbital elements. 

Each member is used to evaluate the cost functions, which are found by 
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propagating the orbit forward in time. The members are then modified using 

genetic operators, so the orbit which minimizes the cost function is chosen. 

4.2.2   Software Description 

The GA used was designed for a Master's thesis by Schott [64]. It was 

developed within the Design Optimizer / Markov Evaluator software, 

written at Draper Laboratory [65]. All the software is written in FORTRAN 77. 

4.2.2.1  Interface to Genetic Algorithm Software 

The interface between the GA software requires that the cost function 

evaluations be performed by a subroutine call. This subroutine was a 

modified version of constjprop, known as const_opt. A combination of the 

GA software and const_opt became the master process. For every series of 

cost function evaluations required, a call to const_opt was made. The 

subroutine const_opt enrolled itself as a PVM task, spawned slave processes 

across the virtual machine, and sent a member of the population to each 

slave process where the cost function evaluation was calculated in parallel. 

The interface between the PVM/DSST and the GA is shown in figure 4-4. 
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Figure 4-4 : Interface Between GA and PVM/DSST 

The slave executable is detailed in Figure 4-5. 
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Master Process 

Receive Broadcast 
(Constellation 
Global Data). 

DO WHILE .TRUE 

Receive Satellite 
Local Date. 

Wait Until Message 
Received 

DO FOR ALL REQUEST TIMES 

END DO 

END DO 

Propagate to 
request time. 

Evaluate cost 
function. 

Return evaluated cost 
function to master. 

Figure 4-5: Slave Executable 

One of the main advantages in using the GA for the optimization technique 

is its capability to make use of parallel cost function evaluations. Other 

optimization techniques only operate on one set of parameters; after every 

cost function evaluation, new parameter values are chosen. There is no 

concept of a population requiring multiple cost function evaluations at the 

same time. 

The majority of the computation required for an optimization algorithm is in 

the cost function evaluation. The ability to perform this step in parallel 

results in a significant performance improvement. 
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4.2.2.2 Modification of Propagator 

The following changes had to be made to the PVM/DSST (Chapter 3) so it 

would work with the GA software: 

• The slave program, sat_opt, had to send the cost function evaluation to 

the master process. 

• The master program, const_prop, had be written as a subroutine. The 
argument list passed the parameters from the GA, the number of 
parameters to evaluate, and returned the cost function evaluations. 

• Because the cost functions were evaluated in parallel, the order in which 
the cost functions were evaluated did not necessarily match the order of 
the parameters. An extra value had to be sent between the master and the 
slave. This number identified the slave process to the master so the 
correct parameters could be matched with their respective cost function 

evaluations.   (Ref. Section 2.3.4) 

4.3 Frozen Orbit Design 

This section describes an example use of the orbit optimization tool. The 
example applies the orbit optimization tool to the frozen orbit design 
problem. Use of the optimization tool is described in detail in Appendix 

D.3.4.2. 

4.3.1    Use of the Optimization Tool 

Two steps are required before using the optimization tool. The two steps are: 

• Develop a cost function that the optimization tool will minimize. The 

cost function must include all factors going into the orbit design as the tool 
will neglect any concerns that do not appear in the cost function. 
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•   Determine which parameters to vary and the range of each of the 

parameters. 

4.3.2    The Frozen Orbit 

The goal of a frozen orbit is to maintain a constant argument of perigee and 

eccentricity [62]. Many satellites require frozen orbits. Earth observation 

satellites need to be at the same altitude over the same place on the Earth to 

obtain several pictures for comparison over time [27]. Frozen orbits also 

reduce fuel consumption in station keeping [27]. In addition, both Ellipso and 

Teledesic GPCS are using frozen orbits [66, 50]. 

The central body non-sphericity causes the largest changes in the argument of 

perigee and eccentricity. The changes in argument of perigee and eccentricity 

due to the J2 and J3 zonal harmonics are shown in equations 4-2 [62]: 

de        3nRJ,s'mif,    5  . , .^ 
— = ,        , ,   1 —sirr i 
dt       2a\\-e2f\     4 ) 

COS CD 

dco      3nJ2R
2 (.    5 . 2. 

— = -z—2—V 1—sirr* 
dt     a\l-e2){,     4 ; 

0 

0 = 1 + _Ä 
2J2a(l-e2) 

sm2i — ecos'i 

K        sin i 

2A„:„„ (4-2) sm© 

Because J2 is the dominant zonal perturbation (Table 1-3), equations 4-2 will 

provide a good estimate of a frozen orbit. Further refinement must be 

accomplished in the presence of a full zonal field. 

Analyzing equations 4-2 reveals the methods to achieve a frozen orbit. There 

are three methods to null the eccentricity rate: 

• Place the orbit in the critical inclination [   1 sin2/ =0] 
V     4        J 

• Place the satellite in an equatorial orbit. [ z=0° ] 

• Set the argument of perigee to 90° or 270°. 
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To remove the argument of perigee variation, the satellite must be in a 

critical inclination orbit or 0 must be set to zero [62]. 

4.3.3    Frozen Orbit Design using the Orbit Optimization Tool 

A nominal satellite is given with near frozen starting conditions. This orbit 
is taken from the Teledesic constellation (Section 4.4) [66]. The satellite orbital 
elements are shown in Table 4-1. 

Table 4-1:  Satellite Keplerian Elements used for 
Frozen Orbit Determination [66] 

Element Value 

Semimajor Axis (km) 7073.14 

Eccentricity 0.00118 

Inclination (deg) 98.142 

Longitude of Ascending 
Node (deg) 

0.0 

Argument of Perigee 
(deg) 

90 

This orbit achieves its frozen state by using a argument of perigee equal to 90° 
and choosing the appropriate value for eccentricity where 0 is zero. Due to 
other constraints the semimajor axis and inclination are fixed, therefore the 
critical inclination cannot be used to achieve the frozen orbit. To numerically 
depict the frozen orbit, the PVM/DSST can be used to generate element 
histories over time. The input file used to generate the element histories is 

shown in figure 4-6. 
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N Satellites:    1   ElType  1 

nintervals: 1 
Begin interval 1 19950401.0  000000.0 
End   interval 1 19951001.0  1.00 
Deltat interval 1 86400.0 

nburns = 0 

Satellite Number:   1 Epoch Date: 19950401.0 Epoch Time:   0.00 

Keplerian  Elements : 0.7073140000000000D+04 
0.1180000000000000D-02 
0.9814200000000000D+02 
0.0000000000000000D+00 
0.9000000000000000D+02 
0.00OOOO000O0000OOD+00 

CD: 2.20000000 Rho One:        0.00000000 
S/C Mass: 800.00000000 S/C Area:        0.00014400 
Integrator Step: 43200.00000000 

Retro: 1 Atmos Mdl: 1 Potent Mdl: 4 
Nmax: 21 Mmax: 0 Izonal: 1  IJ2J2:   2 
Nmaxrs: 21 Mmaxrs: 0 Ithird: 3 
Ind Drg: 2 Iszak: 2 Ind Sol: 2 

Figure 4-6  Input file for Generating Element Histories from the Nominal 
Satellite State 

The zonal harmonics through degree 21 were the only perturbation used in 
this analysis. However, developing the frozen orbit in the presence of other 
perturbations only requires modification of the satellite input file. The 
PVM/DSST propagated the satellite six months, outputting mean elements 
once per day. The resulting argument of perigee and eccentricity element 
histories are shown in figure 4-7. 
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Figure 4-7:  Element Histories of Nominal Satellite 

It is also useful to plot a phase plane, the eccentricity versus the argument of 

perigee. 
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Figure 4-8:  Argument of Perigee Vs eccentricity 

A simple cost function was then developed to reduce the variation in 

argument of perigee and eccentricity.   The cost function calculated the total 
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variation from the initial eccentricity. This was accomplished by adding the 

absolute value of the eccentricity deviation from the initial value at every 

output time. The output time step (86400.0 seconds) is shown in the input 

file, figure 4-6. Because deviations in the eccentricity and argument of perigee 

are directly related, there was no need to add the argument of perigee 

variations to the cost function. Although this problem has a very simple cost 

function, more complex problems will require more complex cost functions. 

Multiple parameters in the cost function require normalization and 

weighting of each parameter, for example. 

The final step was to choose which parameters to vary. For this problem the 

choice was very simple. Only the eccentricity could be varied to achieve the 

frozen orbit. All other parameters were fixed by other constraints or the 

equations in 4-2. 

The optimization software used the following input file (titled dome.in) to 

find the best frozen orbit. 

Choose the most frozen eccentricity 
0, itest 
9,250,0.07, iopt,maxitr,epsiln 
20985,50,1, kseed,mpopsize,ncomp 
1,0,0,0,0.2,0, Opts:  constr,clones,Popt,Ropt,Topt,ishr 
0, fixed parameters 
1, continuous parameters 
0,0,0, it chooses initial conditions 
0.001000, min of continuous 
0.001200, max of continuous 
0, discrete parameters (3 failure rates) 
4, number of bins for each discrete parameter 
0, initial discrete (ga: param# ie. #1) 
.001169,.001171,.001173,.001175, 

Figure 4-9: Example GA input file 

The orbit and perturbation options in figure 4-6 were used to describe the 

nominal conditions. The eccentricity values are generated by the genetic 

algorithm within the range 0.0010 and 0.0012, as specified in the GA input file, 

figure 4-9. The GA generates 255 discrete values from the one 'continuous' 

parameter. For this problem, it is trivial to evaluate all the 255 possible 

combinations of values. With just two parameters, the number of 

combinations would rise to 2552 or 65,025 function evaluations.    The real 
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power of this optimization method is in finding the region of the optimal 
multi-criteria answer without evaluating all possible functions. The GA will 
not continue to narrow its focus or 'zero in' on the best value beyond the 
initial discretization of the problem. However, the chosen values will be in 
the area of the best solution. In order to come up with the best value the 
parameter range must be narrowed manually. This process will be illustrated 

in this example. 

The output of the GA is given in two files, DO and Dz. Figure 4-10 and table 

4-2 show the output generated using the input files shown in figures 4-6 and 

4-9. 

****  DOME BEGAN ON 27-Apr-95 AT 23:04:35    **** 
Run ID: Choose most frozen eccentricity 

* Optimization method:    9 * 
Optimization search stopping criterion: 7.0000E-02 
Maximum number of optimization iterations: 250 
Genetic Algorithm: 
population size:        50 random number seed:       20985 
crossover: 0.80 per bit mutation:        0.0040 
markov model states:     1  fixed parameters: 0 
continuous: 1  discrete parameters: 0 

continuous   initial      lower       upper 
variable     value       bound       bound 

0.O000E+0O   1.0000E-03   1.2000E-03 
cfe#   139       ** stop due to population convergence ** 
Parameters reverted to original:       0 
Total cost function evaluations:     139 
Evaluation of minimum value: 50 
Algorithm elapsed time: 101.4633 

Function value Parameter values 
2 3 4 

1.64641633E-05   1.17098039E-03 
****  DOME TERMINATED ON 27-Apr-95 AT 23:06:17    **** 

Figure 4-10: DO Output Report. 
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Table 4-2: Dz Output File1. 
Number of 
Function 

Evaluations 
Performed 

Population 
Size 

Number of 
identical 

members of the 
population 

Cost Function 
Evaluation 

'Best' Parameter 
Value 

Convergence Factor 

50 50 0 1.64641633E-05 1.17098039E-03 1.53222466E-02 
95 50 11 1.64641633E-05 1.17098039E-03 4.34377119E-02 
139 50 14 1.64641633E-05 1.17098039E-03 8.91743973E-02 

The resulting eccentricity is close to the value given in the initial design. 
However, small changes in the initial parameters have a dramatic effect on 

the element histories. The first value chosen by the GA was used to narrow 
the eccentricity range so that the optimization calculation could be repeated. 

Three more refinements were made. Table 4-3 lists the ranges used, the 'best' 
eccentricity found, and the value of the cost function evaluation for each 
successive iteration. 

Table 4-3: Optimization Results for Iterations 2,3 and 4. 
Iteration Range Best Eccentricity Cost 

2 0.001170-0.001175 0.00117105874 1.3255e-06 

3 0.0011710-0.0011711 0.00117106584 4.6564e-08 

4 0.00117106-0.00117107 0.00117106561 1.5760e-09 

The effect of the eccentricity chosen by the fourth iteration is shown in figures 
4-11A and 4-11B. 

^The first row of text has been added to this file for explanation. 

163 



x10' Eccentricity vs Time 

'0    20   40   60   80   100   120   140   160   180   200 
Time in Days         

Figure 4-11 A:   Nominal and Optimized Element Histories 
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Figure 4-1 IB:  Nominal and Optimized Argument of Perigee Vs Eccentricity 

Figures 4-11 depict the improvement in reducing argument of perigee and 
eccentricity variations. These results are seen more clearly in figure 4-12. 
This figure shows the difference between the maximum and minimum 
values of eccentricity and argument of perigee, plotted on a logio scale. 
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Figure 4-12:    Maximum Variations 

The element histories of the optimized orbit demonstrate the effectiveness of 

the optimization tool applied to this problem. 

An advantage of using the orbit optimization tool for frozen orbit 
determination is its ability to include arbitrary perturbations. Propagating the 
'optimized' orbit described in figure 4-6 and table 4-3 in the presence of 
tesseral harmonics, (J2)

2/ third body, and solar radiation pressure generates 
figure 4-13. A year interval, as opposed to the six month interval shown 
previously, was used to generate figure 4-13. 
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Figure 4-13: Argument of Perigee Vs Eccentricity with Perturbations 

Further attempts to achieve a more frozen orbit by adjusting eccentricity 
showed negligible improvement in both the eccentricity and argument of 
perigee histories. Any future attempts to achieve a more frozen orbit will 
require modification of additional orbital elements. 

An improvement to the optimization tool would use the GA to find the 
region of the best values and use other optimization methods to refine the 
solution. 

4.4 Application of the PVM/DSST and the Optimization Tool: The 

Teledesic System 

The Teledesic Corporation has proposed the construction of a 
communication satellite constellation to "provide interactive broadband 

information services to people in rural and remote parts of the United States 

and the World [66]." Teledesic plans to offer fixed satellite services. The 
Teledesic target market is remote and rural areas of the world, where access to 
broadband information services do not already exist. Unique to Teledesic is 
the size of the constellation proposed.   As shown in figure 1-1, Teledesic is 
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planning to operate 840 satellites. As stated in Chapter 1, this constellation 

alone is proposing to operate more satellites than are currently operating in 

space. 

4.4.1   Overview of Satellite System Design 

The Teledesic satellite is depicted in figure 4-14. 

¥~="=^ 

Figure 4-14:  The Teledesic Satellite 

The constellation consists of twenty-one evenly spaced planes, each plane 

separated by 9.5°. Each plane will contain forty-four near circular satellite 

orbits. Forty of the satellites will be operational and four will be used as on- 

orbit spares [66]. The satellites are in a sun synchronous, frozen orbit. The 

constellation plans to provide a minimum elevation angle of 40° between 

±72° latitude.   The constellation Keplerian elements are listed in table 4-4. 
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Table 4-4 Teledesic Orbital Parameters [66] 
Plane 
No. 

Number of 
Satellites 

Altitude 
(km) 

Angle of 
Perigee 

Arc 
(deg) 

Right 
Ascension 

of 
Ascending 
Node (deg) 

Eccentricity Inclination 
(deg) 

I 40 to 44 695.0 90 360 0.0 0.00118 98.142 

2 40 to 44 695.5 90 360 9.5 0.00118 98.144 

3 40 to 44 696.0 90 360 19.0 0.00118 98.146 

4 40 to 44 696.5 90 360 28.5 0.00118 98.148 

5 40to44 697.0 90 360 38.0 0.00118 98.150 

6 40 to 44 697.5 90 360 47.5 0.00118 98.152 

7 40 to 44 698.0 90 360 57.0 0.00118 98.154 

8 40 to 44 698.5 90 360 66.5 0.00118 98.156 

9 40 to 44 699.0 90 360 76.0 0.00118 98.158 

10 40 to 44 699.5 90 360 85.5 0.00118 98.160 

11 40 to 44 700.0 90 360 95.0 0.00118 98.162 

12 40 to 44 700.5 90 360 101.5 0.00118 98.164 

13 40 to 44 701.0 90 360 114.0 0.00118 98.166 

14 40 to 44 701.5 90 360 123.5 0.00118 98.168 

15 40to44 702.0 90 360 133.0 0.00118 98.170 

16 40 to 44 702.5 90 360 142.5 0.00118 98.172 

17 40 to 44 703.0 90 360 152.0 0.00118 98.174 

18 40 to 44 703.5 90 360 161.5 0.00118 98.176 

19 40 to 44 704.0 90 360 171.0 0.00118 98.178 

20 40 to 44 704.5 90 360 180.5 0.00118 98.180 

21 40 to 44 705.0 90 360 190.0 0.00118 98.182 

4.4.2    Assumptions 

Several assumptions were made in analysis of the Teledesic satellite 

constellation. Teledesic has staggered the orbital altitudes to prevent collision 
between satellites [66]. To simplify the refinement of the constellation, this 

requirement was removed from the design constraints. 

Secondly, because long time spans (5 years) were used in analyzing the 
constellation, the effects of drag were not studied. The satellite has a higher 
than average area/mass ratio (0.18 m2/kg), so drag will have a significant 
impact on the satellite [67]. Note that this area/mass ratio is a worst case for 
this satellite. Drag studies will require modeling the effective area of the 
satellite.   However, neglecting drag is a valid assumption if drag make-up 
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maneuvers maintain the nominal semimajor axis of the orbit. The no-drag 

assumption leads to additional assumptions in the analysis of the orbit. 

The frozen orbit constraint requires the eccentricity and argument of perigee 

to remain constant. However, the Keplerian VOP equations demonstrate that 

drag make-up maneuvers can also be used to control the variations in the 

argument of perigee and eccentricity [5]. Therefore, changes in the initial 

constellation were only constrained to maintain the original amount of 

variation in argument of perigee and eccentricity. Although obtaining the 

minimum variation in argument of perigee and eccentricity was desirable, it 

was not accomplished in this project. 

Element histories are presented per plane, with the implied assumption that 

the perturbative effects are the same for every satellite in the plane. This 

assumption is not valid for the tesseral harmonics, as these perturbations are 

dependent on the ground track of the satellite. The minimum elevation 

angle plots, however, do not use this assumption as all 840 satellites are 

propagated individually. Because the satellites have a 100 minute period, the 

in-plane differences in third body and solar radiation pressure perturbations 

are negligible. 

Finally, the DSST was assumed to accurately predict the future state of the 

satellites. 

4.4.3    Error Sources in Elevation Angles 

In order to use minimum elevation angles as a constellation design metric, 

the maximum errors in the evaluation process of these angles must be 

determined. If the error is not determined, the minimum elevation angles 

for different constellations cannot be compared. The error could be larger 

than the differences between the metrics, making a comparison meaningless. 

Due to the process error, the calculated minimum elevation angle will have 

different upper and lower bounds. The upper and lower bounds are described 

in equation 4-3. 
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E-£lh<E<E + 8ub (4_3) 

where    E is the elevation angle. 

£lh is the maximum error below the numerically calculated 
minimum elevation angle. 

euh is the maximum error above the numerically calculated 
minimum elevation angle. 

E - £lb is the lower bound for the minimum elevation. 

E + eub is the upper bound for the minimum elevation. 

There are four sources of error in the minimum elevation angle calculation: 

1]  Spherical Earth assumption. 

2]  Error in satellite position. 

3] Length of time between each angle evaluation. 

4] Grid spacing. 

Because finding the minimum elevation angle is of interest, the upper bound 

is easily calculated. The upper bound is found by correcting the calculated 

elevation angle for the error in numerical evaluation (errors 1 and 2). Error 

introduced due to the time or position of evaluation (errors 3 and 4) will not 

factor into determination of the upper bound. 

Calculation of the lower bound requires subtracting all four error sources 

from the calculated minimum elevation angle. The third error source is 

necessary for the minimum elevation angles to be generalized over the 

duration of the time interval. If this error source is ignored, the minimum 

elevation angles are only valid for the exact time of calculation. Calculation 

of the fourth error source allows the elevation angles to be generalized for the 

area between the grid points. Ignoring this error makes the minimum 

elevation angles valid only for the exact locations calculated. 
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4.4.3.1  Spherical Earth Assumption 

The spherical Earth assumption adds error to the calculated minimum 
elevation angle. The worst case situation is used to calculate the maximum 
error introduced into the minimum elevation angle evaluation. For this 
error analysis, an ellipsoidal Earth model that varies with latitude will be 
used as truth.  No longitude dependent errors enter into the calculation. 

The error due to a spherical earth assumption is important only in finding 

the 'true' minimum elevation angle. When using the minimum elevation 
angle to compare constellations, this error can be neglected as it is the same 
for each angle evaluation. 

The spherical Earth error can be broken into two parts. The two parts are: 

• The   local   topocentric   coordinate   system   (LTCS)   has   an   incorrect 
orientation. 

• The (LTCS) has an incorrect origin. 

The first error is depicted in figure 4-15. 
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L': Geocentric Latitude 
L: Geodetic Latitude 

Figure 4-15: Error Generated by Ignoring the Difference Between Geodetic and 

Geocentric Latitude . 

Geocentric and geodetic latitude are depicted in figure 4-15 [38]. In calculating 

the elevation angle, the vector from the center of the Earth (C) to the grid 

point (P) is assumed to be perpendicular to the local horizon. Because the 

geodetic latitude describes the angle perpendicular to the local horizon, an 

error of magnitude 8 is introduced into the elevation angle evaluation. The 

quantity £\ is simply the difference between the geocentric and geodetic 

latitudes.  The maximum E\ can be found using equation 4-4 [49] 

: arcsm 
/?e(l-e2)sinLVl-g2cos2L 

R^\-e2sm2L 
(4-4) 

where:    e is the eccentricity of the Earth 

Re is the equatorial radius 

Rp is the polar radius 
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The maximum difference occurs at L=45°.  Using : 

Re= 6378.137 km  Rp =6356.753 km   e = 0.08182 

gives a maximum error of £i=0.1917°. 

The change in elevation angle due to the error in the origin of the LTCS is 

created by assuming a spherical Earth of radius Re.  This difference is depicted 

in figure 4-16. 
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Figure 4-16:  Difference in Elevation Angle Due to Site Position Difference. 

The maximum difference in the elevation angle calculation will occur at the 

North and South poles. At the poles the difference in position creates a 

maximum difference in elevation angle shown in equation 4-5. 

173 



e2 = abs{E -E') = arcsin 
^ 

v^y 
(4-5) 

where:    p is the minimum distance from the ground to the satellite. 

The quantity p is evaluated at the minimum p as the error reaches a 

maximum at this point. 

The maximum 8 is 21.384 km, when the values for Re and Rp shown above 

are used. The quantity p depends on the satellite orbit. 

The error e2 will only affect the upper bound of the minimum elevation 

angle. Using the equatorial radius for the spherical Earth radius will cause 

the assumed LTCS origin to be father from the center of the Earth than the 

actual origin (equal at the equator). Therefore, this error source will cause the 

calculated elevation angles to be less than or equal to the actual elevation 

angles. 

The upper and lower bounds due to a spherical Earth assumption are given 

in equation 4-6. 

£lb = £x+E     £uh=£,+£2+E 

(4-6) 

where:    E is the calculated elevation angle. 

4.4.3.2 Error in satellite position 

The worst case difference in elevation angle caused by an error in the satellite 

position is described by equation 4-7. 
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ecn = arcsin 

(4-7) 

where:    e   is the maximum error in the minimum elevation angle 
calculation due to error in satellite position. 

A is the maximum difference between the actual and calculated 
satellite position. 

p is the minimum distance from the ground to the satellite. 

This value depends on the maximum error for a particular orbit and the 

propagation technique used. 

Using the DSST (Chapter 1) without the contribution of the short periodic 

functions results in a maximum position error of 10 km for a low Earth, near 

circular satellite [27]. With a p of 690.3 km using the mean elements only 
gives an esp of ±0.83°. 

4.4.3.3 Length of time between each angle evaluation 

The maximum change in elevation angle between each time step must be 

calculated to generalize the minimum elevation angle calculation over the 

time interval from the first to the last evaluation. The minimum elevation 

angle to one satellite changes monotonically over a time step, unless the 

satellite passes through its maximum value in between the time steps. 

Assuming the elevation angle is at the predicted constellation minimum at 

time tx and monotonically decreases with a constant rate until time t2, the 

maximum deviation from a calculated elevation angle will occur halfway 

between two time steps. 

As the elevation angle rate depends on the elevation angle, the constant rate 

assumption is not accurate. However, the absolute value of the elevation 

angle rate decreases with the elevation angle, so the rate at time tx is larger 

than time t2. Therefore, this assumption is conservative in generating the 

maximum deviation in elevation angle. 
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The maximum error is then found by integrating the maximum elevation 

angle rate over half a time step. 

The elevation angle rate is calculated from the worst case geometry.   The 

worst case assumes the following: 

• The satellite is moving directly away from the point of interest (P) on the 
Earth. For the satellite to be moving directly away from the point of 
interest on the sphere, the orbital plane must intersect P. 

• For the development of the elevation angle rate equations, the spherical 
Earth and the circular orbit assumptions are made. 

• For eccentric orbits, the elevation angle rate is larger near perigee. If 
elevation angles of a highly eccentric orbit is of interest, the satellite 

velocity at perigee can be used for the worst case central angle rate, — (see 
dt 

figure 4-17). 

• All coordinates are in ECEF, so the quantity — must reflect the maximum 
dt 

difference between the satellite velocity and the rotation rate of the Earth. 

The geometry of the worst case is shown in figure 4-17. 
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Figure 4-17:  Geometry of Elevation Angle Rate Calculation 

where:    R is the vector from the center of the Earth to the satellite. 

(|> is the angle between the projection of p on the local tangent 
plane and the vector R. 

0 is the angle between the vector xp and p. 

yp is the projection of the radius vector of the satellite on the 
normal to the local tangent. 

Re is the spherical Earth radius. 

Equation 4-8 calculates the elevation angle from figure 4-17. 

tan£ = 
v   xp   J 

tan0—-sec0 
a 

(4-8) 

where:    a is the semi-major axis of the satellite 

Taking the derivative of both sides and simplifying results in equation 4-9 for 
the elevation angle rate. 
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 = -M .         XD*0 
dt p2 p 

where:    — is a constant for the circular satellite. 
dt 

(4-9) 

As <j>, yp, and p are functions of E, equation 4-9 demonstrates that the rate of 

change of the elevation angle is a function of the elevation angle. When 

solving for the maximum change in elevation between time steps, the 

constellation predicted minimum elevation for the constellation is used as 

the initial condition. This is again the worst case. Assuming that the satellite 

is at the desired minimum elevation angle at the evaluation time and the 

elevation will continue to decrease until the next evaluation will result in 

the error in elevation angle. As described above, integrating equation 4-9 for 

a half a time step with the initial elevation angle equal to the constellation 

minimum elevation angle results in the maximum change in the minimum 

elevation angle. 

This error only appears in the change in the lower bound of the minimum 

elevation angle.  The error is shown in equation 4-10. 

dE W£ dt 
(4-10) 

where:     ets is the error due to the time step size. 

t is the time step size. 

4.4.3.4 Grid spacing 

In order to calculate the maximum change in the minimum elevation angle 

between grid points, figure 4-17 and equation 4-8 are used. The maximum 

difference in minimum elevation angle due to grid spacing will occur 

between grid points.   As with the error introduced from generalizing over 
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time, the constellation minimum elevation angle is used to determine the 

worst case impact. This will determine the maximum change between grid 

points below the minimum elevation angle. Starting with the constellation 

minimum elevation angle, equation 4-8 is used to calculate the angle <j>. The 

angle <j) is then increased until E changes by the maximum error desired. The 

change in § is used to describe the necessary spacing between grid points. 

With this error source calculated, the minimum elevation angles for a grid of 

points over the Earth can be generalized to include the area between the grid 
points. The error due to grid spacing will be referred to as £gs 

4.4.4   Impact of Perturbations on Nominal System 

The minimum elevation angle metric was used to evaluate the impact of 

perturbations on the nominal constellation. As described in Section 4.4.3 , to 

make use of the minimum elevation angle metric, the maximum error in 

numerically calculating the angles must be determined. 

4.4.4.1   Error in Minimum Elevation Angle Metric 

The elliptical Earth model was used to calculate the ECEF position vectors on 

the Earth. However, the vector from the center of the Earth was assumed to 

be perpendicular to the local horizon at the surface of the Earth. From 

equation 4-4, this assumption introduced a maximum error of ±0.19°. 

Mean elements were used to generate the satellite positions. The maximum 

difference between mean and osculating positions for the Teledesic orbit is 10 

km [27]. From equation 4-5, the worst case error in satellite position creates a 

maximum error in the minimum elevation angle of ±0.83°. 

To keep the error bound within -2.0° a grid spacing of 0.4° was necessary. 

Because the metric calculated the minimum elevation angles, the grid 

spacing and time step errors can only increase the lower error bound. The 

satellite position and spherical Earth assumptions, however, affect the upper 

and lower bounds. 
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To place an evenly spaced grid over the entire Earth would require 
approximately 257,600 grid points2. These points are evenly spaced on the 
surface of the Earth, every 0.4° in central angle. The grid spacing requirement 

generated too many points to numerically evaluate, so only one longitude 
was evaluated. Calculating the upper and lower bounds of the minimum 

elevation angle for one longitude was still effective to demonstrate the effect 

of perturbations on the constellation. 

The final error source involves calculating the maximum possible elevation 

rate. Figure 4-18 shows the elevation rate versus elevation angle calculated 

using equation 4-8. The worst case (lowest altitude) Teledesic satellite was 

used and a circular orbit assumption was made. 

Elevation Rate vs Elevation Angle for Teledesic 

-0.7 
10 20 30 40 50 60 

Elevation Angle (deg) 
70 80 90 

Figure 4-18:   Elevation Angle Rate Vs Elevation Angle 

Figure 4-18 shows that the elevation angle rate from E=40° to E=30° varies 
from -0.3 deg/sec to -0.2 deg/sec. To achieve the desired -2° maximum error 
would result in evaluating the elevation angles every 14.4 seconds. A 14.4 
second time step would require excessive calculation times on the computer 
systems  used.     Therefore,  the  minimum  elevation plots  could  not be 

2This number is found in generating equally spaced points over the Earth, as opposed to points 
equally spaced in latitude and longitude. 
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generalized to include all times between each evaluation. The metric is only 
valid for the time of each evaluation, so comparison between plots at 
different times do not necessarily demonstrate a worse constellation. A 60 
second time step for two days was eventually used to generate the minimum 

elevation plots. 

Table 4-5 summarizes the maximum errors and assumptions in the 
minimum elevation angle plots. 

Table 4-5:  Error and Assumption Summary 

Error Source Error / Assumption 
Vector from center of the Earth to 
grid point is perpendicular to the 
surface. 

±0.19° 

Satellite Position ±0.83° 
Grid Spacing -2° 
Length of time between each 
elevation angle evaluation 

Elevation maps only describe 
elevation angles at time steps, not 
time between evaluations. 

LOWER BOUND E - 3.02°(E is the calculated elevation 
angle) 

UPPER BOUND E + 1.02° (E is the calculated elevation 
angle) 

The numbers in table 4-5 are important as they describe how accurately the 
calculated values describe the true minimum elevation angles. 

When comparing the minimum elevation angle between constellations, the 
spherical Earth errors are removed. The upper and lower bounds for 

comparing minimum elevation angles between constellations are shown in 
table 4-6. 

Table 4-6:  Error Bounds for Comparing Constellations 

LOWER BOUND E - 2.83 °(E is the calculated elevation 
angle) 

UPPER BOUND E + 0.83 °(E is the calculated elevation 
angle) 
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4.4.4.2   Minimum Elevation Angles 

The minimum elevation angle metric was used to compare the constellation 
at epoch and five years after epoch to quantify the impact of perturbations on 

the constellation. A summary of the perturbations and metric evaluation 

conditions is shown in table 4-7. 

Table 4-7:  Summary of Perturbations and Metric Evaluation Conditions 

Epoch Date April 1995 
Comparison Date April 2001 
Perturbations Geopotential (21X21 JGM2) 

Third Body 
Solar Radiation Pressure 

Propagation Method PVM/DSST 
Points Evaluated Longitude. ±90° degrees latitude. 

Points every 0.4° latitude. 
Frequency and Duration 
of Elevation Angle 
Evaluation. 

Evaluated Every 60 Seconds for 2 
Days. 

Number of Satellites 
used to Generate 
Element Histories 

21 

Number of Satellites 
Propagated to Generate 
Minimum Elevation 
Angle Plots 

840 

Propagating the constellation two days after epoch gives the minimum 

elevation plot shown in figure 4-19. 
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Minimum Elevation Angles vs Latitude 
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Figure 4-19:   Initial Minimum Elevation Angles Vs Latitude for the Nominal 

Constellation 

The nominal Teledesic constellation at epoch for the times sampled is very 

close to meeting its minimum elevation angle requirements. 

The impact of perturbations on the nominal constellation are shown as 

maximum variations in Keplerian elements over five years. The input file 

containing the twenty-one nominal satellites is included in Appendix B. 

Generating these element histories took approximately 2 hours and 30 

minutes, using two SPARC 20's, one SPARC 10, and a SPARC ELC. 
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Figure 4-20:   Nominal Constellation Element Histories 
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Figure 4-21:   Nominal Constellation Element Histories 

The element histories lead to two conclusions about the Teledesic satellite 

constellation: 
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• The orbits are not frozen over time. 

• The ascending nodes vary from the sun-synchronous rate. 

The minimum elevation angles after five years are shown in figure 4-22. As 
stated in table 4-4, the minimum elevation angles depicted in figure 4-22 
cannot be directly compared to the nominal elevation plots because the 
elevation angles were not calculated at a high enough frequency to remove 
reasonable errors from the metric evaluation. However, minimum 
elevation plots evaluated at the same times can be compared. 
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Figure 4-22:   Minimum Elevation Angles of Nominal Constellation Five 
Years after Epoch. 

The minimum elevation angles in figure 4-22 were generated by propagating 
for five years after epoch and then outputting satellite positions every minute 
for two days. Figure 4-22 shows that the angles drop well below the required 
40° minimum elevation. Section 4.4.5 describes the process in which the 
initial constellation was modified with the goal of better achieving the 
constellation requirements. 
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In  summary,  the nominal constellation propagated  five years  has  the 

following problems with respect to orbital requirements. 

• The orbits are not frozen over time. 

• The ascending nodes vary from the sun-synchronous rate. 

• The minimum elevation angles at the comparison times fall below the 
elevation angle requirements. 

4.4.5    Constellation Modifications 

To understand what was causing the deviation from orbital requirements 

seen in the previous section, the solar radiation pressure was removed and 

the same plots were generated again. The element histories and minimum 
elevation plots are shown in figures 4-23 through 4-25. 
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Figure 4-23:   Element Histories Without Solar Radiation Pressure 
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Figure 4-24:  Element Histories Without Solar Radiation Pressure 
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Figure 4-25:  Element Histories Without Solar Radiation Pressure 

The following hypotheses are generated from a comparison of figures 4-23 

through 4-25 against figures 4-20 through 4-22. 

•   Because the satellite area/mass ratio is much larger than average, the solar 

radiation pressure is a significant perturbing force on the satellite. Solar 
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radiation pressure results in the largest variation in eccentricity and 

argument of perigee. 

• Solar radiation pressure and third body create large inclination changes 

which effect the nodal rate. The solar radiation pressure counteracts the 

solar point mass effects on the inclination and the nodal rate. 

• The less than required elevation angles result from differing nodal rates. 

If the nodal rates can be made more consistent across all the planes, the 

minimum elevation angles will not decrease. 

4.4.5.1  Initial Cost Function Design 

From the hypotheses, the constellation requirements, and trial and error, the 

cost function shown in equation 4-11 was developed in order to make use of 

the GA to perform orbit optimization. 

absie - e„nm)    abs{ (O - (0„nm) 

max(Ae) max(A©) 

3*abs(Q-Qsun _) sun-sync 

max(AQ ) (4-11) sun-sync 

One satellite in each plane was then modified by the orbit optimization tool 

to minimize the cost function shown in equation 4-11. Each orbit was treated 

as a separate optimization problem. The entire process of optimizing all 

twenty-one orbits took approximate twenty-four hours using two SPARC 20's, 

one SPARC 10, and one SPARC ELC. The dome.in file used is shown in 

figure 4-26. 
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Firs t run of optimizing satellite orbits 
0, itest 
9,35000,0.1, iopt,maxitr,epsiln 
42,1000,1, kseed,mpopsize,ncoinp 
1,0,0,0,0.2,0, Opts:  constr,clones,Popt,Ropt,Topt,ishr 
0, fixed parameters 
3, continuous parameters 
0,0,0, it chooses initial conditions 
7071.14,0.00100,98.1020, min of continuous 
7085.14,0.00136,98.2220, max of continuous 
0, discrete parameters (3 failure rates) 
4, number of bins for each discrete parameter 
0, initial discrete (ga: param# ie. #1) 
.001169,.001171,.001173,.001175, 

Figure 4-26:  dome.in for Constellation Optimization 

The semimajor axis, inclination, and eccentricity were the parameters the 
optimization tool modified. The initial semi-major axis, eccentricity, and 

inclination chosen by the optimization run are shown in figure 4-27. 
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Figure 4-27: 'Optimized' Elements at Epoch 

The element histories of the optimized constellation are shown in figures 
4-28 through 4-29. Note that these element histories correspond to the 

nominal element histories shown in figures 4-20 and 4-21. 
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Figure 4-28:  'Optimized' Constellation Element Histories 
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Figure 4-29: 'Optimized' Constellation Element Histories 
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Figure 4-30:   'Optimized' Minimum Elevation Angles 

The resulting 'optimized' constellation had some positive and negative 
features. The argument of perigee and eccentricity variations were kept to 
near their original value. The inclination variations were also similar to the 

nominal variations. 

The nodal rate was much closer to the sun synchronous rate. This can be 
seen more clearly in figure 4-31. 
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Figure 4-31:   Maximum Deviation from Sun Synchronous Node for Nominal 

and 'Optimized' Constellations 

The optimization algorithm chose elements for the constellation that best 

satisfied the cost function. In doing so, the maximum deviation from the 

sun-synchronous value varied more quickly in adjacent planes. Because of 

this problem, larger gaps in coverage occurred and the minimum elevation 

plot was actually worse. This is seen more clearly in figure 4-32. 
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Figure 4-32:   Minimum Elevation for Nominal and Optimized System 

The optimized constellation has a much worse elevation angle five years 

from epoch, approximately 10° at every latitude. This comparison 

demonstrates a significant degradation in performance as the errors calculated 

in table 4-6 are much smaller than the average difference. 

4.4.6 Conclusions 

Maintenance of the Teledesic constellation presents a great number of 

technical challenges. Different planes will require different maneuver 

planning budgets to make up for the inclination changes induced by the third 

body perturbation. All satellites will have to be designed to carry the 'worst 

case' amount of fuel so that each satellite can be produced identically. Certain 

planes will require much more frequent inclination maintenance 

maneuvers.  These problems all have impact on the system design. 

If the sun-synchronous requirement were removed from the Teledesic 

system, it is possible the variation in nodal rates would decrease dramatically. 

The orbit optimization tool could be configured to choose a new nodal rate 

and 'design' a constellation that has a more consistent node rate across each 

plane. 
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The orbit design tool is an effective tool for the orbit designer. Because the 

GA is operating in a parallel environment with the DSST, an enormous 

amount of computation can be performed. Careful design of the cost function 

is critical to the result achieved with the tool. Any concerns or requirements 

not present in the cost function or the parameter constraints will be ignored, 

which may lead to unwanted results. 
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5.0 Conclusions and Future Work 

5.1 Conclusions 

5.2.2   PVM/DSST 

Satellite constellations are increasing in number for a variety of reasons, the 

most important of which are: 

• Ability to provide worldwide communications. 

• Market potential of mobile communication and information services. 

• Technological developments in communication systems. 

All the satellite constellations proposed will require significant computing 

resources to track, control, and maintain. The demand for scalable, portable, 

and flexible flight dynamics software will continue to grow as many of these 

systems are being proposed by commercial ventures interested in cost efficient 

use of resources. Parallel computing can provide the necessary computing 

resources required for such systems with cost efficiency. However, software 

must be designed to take advantage of the parallel hardware. 

PVM was chosen from the available methods for implementing a parallel 

orbit propagator, as it provided the most capability in the shortest amount of 

time.  It's main advantages included: 

• Portability 

• Ease of using legacy code 

• Ability to use on a network of workstations 

The data parallel and multi-threaded approaches may have produced more 

performance but would have required re-writing more software. With PVM 

the legacy software was used almost 'as is'. 
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The PVM/DSST is an initial step in the development of a constellation flight 

dynamics system. Combining the message passing approach to interprocess 

communication with a FORTRAN 77 programming environment proved to 

be an effective method for creating a parallel application from existing serial 

code. The development of the PVM/DSST required very little new software 

in comparison to the amount of existing code used. The use of this legacy 

software created a much more powerful application. 

The PVM/DSST was used to effectively propagate multiple satellites. Adding 

additional processors demonstrated speed-up and efficient use of all available 

hardware. Several factors make the PVM/DSST practical for examining 

multiple satellite constellations.  These factors include: 

• A simple approach to the work division and task management. 

• A versatile orbit propagator with the capability to produce mean 
elements using a variety of perturbation models. 

• An easily reconfigurable networking system with low setup costs and 
efficient communication. 

• A network of computers using shared disk resources. 

• The ability to produce a wide variety of output data in different 
formats. 

The only significant limitation in the design of the PVM/DSST was its 

inability to demonstrate speedup in propagating a single trajectory. 

Because the goal was not to produce an operational system, the error 

handling capabilities of the UNIX programming environment and the PVM 

system were not exploited. Lack of error handling development occasionally 

caused failures while using the PVM/DSST. For instance, processes would 

remain running after program completion or PVM would not start correctly. 

In such a situation the following actions were taken: 

•   Halting pvm, if possible. 

198 



• Killing all active processes. 

• Deleting all the /tmp/pvm[dl].[uid] files. 

The four processor SPARC, known to PVM as a SUNMP architecture, had 

more problems than any of the single processor machines. Use of PVM on 

the four processor machine required tuning of kernel parameters. These 

parameters are located in the /etc/system file. 

On the multiprocessor platform, the problems seen were most likely due to: 

• The PVM implementation on the SUNMP architecture is not 
completely error free. 

• The four processor machine was not administered for optimal parallel 
application execution. This job would require thorough knowledge of 
the architecture as well as the operating system. 

These problems may also contribute to the lower efficiency achieved on the 

multi-processor platform. Despite the lower efficiency, the computation-to- 

cost ratio of this machine is still very good. 

5.1.2   Orbit Optimization Tool 

The use of Schott's genetic algorithm (GA) optimization method proved to be 

an excellent match with the PVM/DSST [64]. GA's are not as computationally 

efficient as other approaches, requiring more cost function evaluations to 

reach the optimal answer. However, by operating on a population instead of 

just one set of parameters, GA's can take advantage of parallel cost function 

evaluations. Using a GA in a parallel computing environment reduces the 

impact of its computational inefficiencies. If the hardware is available to 

perform the necessary computation, the simple interface to the GA makes 

this a powerful optimization method for orbit design. Cost functions are 

easily developed and no derivative information is necessary. 

Unfortunately, the effort was not made to automate the process of 

minimizing  the  cost function  to within  a  given  tolerance.     However, 
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excellent results were attained by manually reducing the interval and 

repeating the optimization algorithm in a smaller parameter space. 

The capabilities of the GA combined with the PVM/DSST were demonstrated 

in Section 4.3.3. Frozen orbit determination in the presence of a 21-by- 0 zonal 

field was achieved to an arbitrary level of accuracy. A more difficult problem 
was examined in the attempt to optimize the Teledesic orbit to better meet 
requirements.  This problem is discussed in the next section. 

5.1.3   Teledesic 

The Teledesic satellite communication system is an enormous project. There 
are many factors that complicate the development of this system. One of 

largest technological challenges is constructing the 840 satellite constellation. 

Analysis of the 840 satellite Teledesic constellation was performed, in part, to 
stretch the computational capability of the PVM/DSST and the optimization 

tool. 

A system of distributed workstations using 2 SPARC 20's, a SPARC 10, and a 
SPARC ELC was able to propagate the 840 satellite orbits for five years in 
approximately 2 hours and 15 minutes. All available perturbation models 
except drag (21-by-21 spherical harmonics, solar radiation pressure, and third 

body) were used in this analysis. 

The orbits initially chosen for the constellation represent a unique approach 
to satellite constellation design. Because Teledesic uses a high inclination 

orbit and does not control the phasing of satellites in adjacent planes, 
different semimajor axes are required for each plane to prevent collision. 
Because of the sun-synchronous and frozen orbit constraints, each plane will 
require slightly different orbital elements. With very tight tolerances on 
collision and different elements for each of the planes, orbital perturbations to 
the constellation will be a significant part of the orbit refinement procedure. 
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The following assumptions were made in the analysis of the Teledesic 

constellation: 

• Drag effects were canceled by satellite maneuvers. 

• The possibility of collision was not addressed. 

• Mean elements were used in the analysis. 

From the analysis discussed in Chapter 4, the Teledesic system provides the 

desired minimum elevation angle with the nominal system. However, 

perturbations will have different effects on each of the satellite planes. 

The initial orbit design does not passively meet the sun-synchronous 

requirement in the presence of perturbations. Although thrusting 

maneuvers could be used to maintain the sun-synchronous requirement, it 

appeared that different initial conditions could be chosen to better maintain 

the orbits. Using the genetic algorithm optimization method, a new system 

was designed that more closely meets the sun-synchronous requirement with 

the same perturbations. However, the new system did demonstrate a lower 

minimum elevation angle after five years. This was due to increased nodal 

spacing between adjacent planes. 

Both the nominal and optimized systems exhibit large variations in 

inclination. To maintain the nominal constellation minimum elevation 

angles, inclination must be kept within a narrow tolerance. Because the 

inclination variations are plane dependent, the fuel budget will be different 

per plane. This result may alter the optimal design of a common satellite for 

all planes, as each satellite will be forced to carry the 'worst case' amount of 

fuel for out of plane maneuvers. 
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5.2 Future Work 

5.2.1   PVM/DSST 

There is an enormous amount of future work in the area of parallel 
computing and astrodynamics. If algorithms and software are created to be 
efficient and scalable, the amount of computation capability available will 
increase dramatically. This could impact many areas of astrodynamics. 

Specific ideas for future work include: 

• The current software is written to be portable to the CM-5. A CM-5 
implementation would provide more computing capability than 
feasible within the current environment. The CM-5 would also be a 
stable platform for testing that would give a direct comparison between 
the computation levels achieved using a network of workstations and 
a supercomputer. 

• Move the software to an IBM PC using the LINUX operating system to 
demonstrate high level performance on a network of personal 
computers. This implementation would demonstrate the power of 
networking low cost computers. 

• Examine the cost/performance ratio for additional multi-processor 
workstations. Some machines are currently being offered with sixteen 
processors per workstation (SGI), which could represent enormous 
computing capability for the cost if the efficiency of these machines 
remains relatively high when executing parallel applications. 

• Develop a GUI interface to the current system with the concept of 
expanding it into a constellation flight dynamics interface. 

• Examine other workstation networking products such as Network 
Linda. These tools may provide a better parallel programming 
environment to develop a more comprehensive parallel and scalable 
flight dynamics system. 

• Redesign and rewrite sections of the stand-alone to perform vector 
calculations with a data parallel language such as FORTRAN 90/HPF. 
This effort is currently ongoing at the Charles Stark Draper Laboratory 
with support from Phillips Lab/VTA. 
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• Implement a different algorithm for orbit propagation using the DSST. 
For example, calculate the mean elements for an interval and then 
spawn processes to calculate the short periodic contributions in 
parallel. This concept could produce significant speed-up when a high 
density of accurate state evaluations are needed in a short amount of 
time, as in a batch orbit determination. 

• Develop a full flight dynamics system on top of a networking system 
such as PVM. Keeping the software scalable and efficient would allow 
the system to increase its computing capability by simply adding more 
computers instead of redesigning the software. 

These ideas do not include all the future work in combining parallel 

computing and astrodynamics. 

5.2.2   Orbit Optimization Tool 

There are many possible future applications of the orbit optimization tool, 

from calculating optimal maneuvers that minimize fuel expenditures to a 

more comprehensive optimization of a satellite constellation. 

The constellation design problem could be approached more thoroughly if 

the constellation was examined as one optimization problem. Each satellite 

could be represented as an additional parameter to be optimized. Other than 

machine capacity, the GA has no limits on the number of parameters that can 

be solved for. Cost functions could be designed for the entire constellation, 

including direct evaluation of metrics such as the minimum elevation angle. 

This could be particularly helpful in refining current designs to perform 

optimally in the presence of perturbations. 

In addition, the design of the orbit optimization tool can be improved. Many 

different types of GA's are available for solving a variety of problems. A 

thorough investigation may show other GA's will solve the problems more 

efficiently. Additionally, the combination of the GA with different 

optimization methods could be used to automatically refine an answer 

within a given tolerance. 

203 



5.2.3   Teledesic 

The perturbative effects on the Teledesic constellation should be examined if 

the nodal rate is changed from the sun synchronous rate. This can easily be 

done using the orbit optimization tool, by optimizing the constellation to 

minimize nodal deviations to the desired rate. If the relaxation of the sun- 
synchronous constraint significantly decreases the variations between planes, 
Teledesic may have to weigh the advantages of a sun-synchronous orbit 
against a decreased fuel budget. 

The Teledesic constellation will undoubtedly undergo further revisions to its 
initial constellation. The next level of analysis should examine the area-to- 
mass ratio to determine how to best model the drag and solar radiation 
pressure effects. The perturbative variations due to the natural solar cycles 
should be analyzed for the lifetime of the constellation. 
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Appendix A:   Keplerian and Equinoctial 
Elements 

This appendix describes the Keplerian and equinoctial elements. The 
Keplerian elements are well known because they geometrically describe the 
two-body orbit. 

The Keplerian elements are described in table A-l. The descriptions apply to 
elliptical orbits only in an inertial reference system (I J K). 

Table A-l: Description of Keplerian Elements [38] 

ELEMENT DESCRIPTION 

Semimajor Axis (a) One half the major axis of the ellipse. 

Eccentricity (e) The shape of the ellipse. 

e=0 is a circle 

e=l is a parabola 

The eccentricity vector (e) points in 

the direction of periapsis. 

Inclination (i) The angle between the vector normal 

to the plane and the K vector. 

Longitude of Ascending 

Node (Q) 

The angle between I and the point 

where the orbit crosses the (I J) plane 

in a northerly direction (-K to +K). 

Argument of Perigee (co) The  angle between the  ascending 

node and the periapsis measured in 

the orbital plane. 

True Anomaly (D) The angle between the eccentricity 

vector   and   the   position   of   the 

satellite. 

Figure A-l depicts the Keplerian orbital elements. 
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Figure A-l: Geometry of Keplerian Elements [38] 

The non-singular equinoctial elements can be defined in terms of the 
Keplerian elements. The equinoctial elements are described by equations 

given in table A-2. 

The retrograde factor (I) is necessary to describe the equinoctial elements. If 

the wrong retrograde factor is used, the equinoctial element set is singular for 
equatorial orbits. For direct equatorial orbits, the retrograde factor must be set 
to +1; for retrograde equatorial orbits, it must be -1. 

206 



Table A-2: Equinoctial Elements [49] 

Equinoctial 

Element 

Keplerian Element 

a a 

h esin(ocH-IQ) 

k ecos(QH-IQ) 

P I=+l tan(i/2)sin(Q) 

I=-l   cot(i/2)sin(Q) 

q I=+l tan(i/2)cos(Q) 

I=-l  cot(i/2)cos(Ü) 

X M+co+IQ 

i Retrograde Factor 

I=+l for 0° < i < 180°  Direct Elements 

I=-l for 0° < i < 180°     Retrograde Elements 
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Appendix B:   Software Listings 

The first two sections of this appendix contain software listings. Section B.l 

contains the listings for the const_prop software. This software contains all 
the routines that were used to perform communication between processes. 
The difference between const jprop and sat_prop, is demonstrated in figures 

3-5 and 3-6. 

The routines listed Section B.l are: 

• const_prop.F 

• const_opt.F 

• rdconst.F 

Section B.2 lists the software written to interface directly to the DSST. This 
software contains no PVM calls and can be used without a message passing 
environment. This software is used to execute the DSST (figure 3-15) and also 
interface below the constellation software (figure 3-5). 

The routines listed in Section B.2 are: 

• sat_prop.F 

• sat_opt.F 

• set_satopt.F 

• crrequest_times.F 

• sort_times.F 

Section B.3 lists an example PVM/DSST input file. The input file contains 
one satellite per plane from the nominal Teledesic constellation. 
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B.l Message Passing Listings 

B.l.l    Program constjprop 

#include "array_sizes.h" 
#define MAX_NPROCS    2 00 
#define NTASK_PER_HOST 4 
#define MSGTAG        10 

program const_prop 
c 
c    const_prop.F - a FORTRAN program that distributes 
c    itself among a pvm virtural machine to run multiple instances 
c    of the DSST 
c 
c    Scott T Wallace, LT, USAF 
c    Master's Student, MIT Aero/Astro 
c 
c  
c 

implicit none 
c 
c    Include the FORTRAN PVM header file 

include '/Users/taz/scott/pvm3/include/fpvm3 .h' 
c 

character*18 nodename, host(MAX_NUM_HOSTS) 
character*8 arch 
character*12 env_input, env_output 
character*MAX_PATH_LENGTH indata_path, outdata_path 
character*MAX_PATH_LENGTH const_file, satdat_file 

c 
integer*4 mytid, info 
integer*4 tids(0:MAX_NPROCS) 
integer*4 i, info, nproc, nhost 
integer*4 mytid, ptid, dtid 
integer*4 speed, narch, ntask 
integer*4 bufid 
integer*4 njobs, jobs_rec, jobs_sent 
integer*4 numt, k 
integer*4 const_size, nintervals 
integer*4 nburns, satno 
integer*4 constopt_int(INT_OPT_SIZE,MAX_NUM_SATS) 
integer*4 satopt_int(INT_OPT_SIZE) 
integer*4 eltype 

logical   fileex 

real*8    intervals(5,MAX_NUM_INTERVALS) 
real*8   burn_list(4,MAX_NUM_BURNS) 
real*8    constopt_dbl(REAL_OPT_SIZE,MAX_NUM_SATS) 
real*8    satopt_dbl(REAL_OPT_SIZE) 

c      
c 
c    Get the pathnames for the data files 

satdat_file = 'satdata' 
env_input   = 'CONST_INPUT' 
env_output  = 'CONST_OUTPUT' 
call getenv(env_input,  indata_path) 
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call getenv(env_output, outdata_path) 
print *,outdata_path 

c 
c    Enter this process in PVM 

call pvmfmytid( mytid ) 
c 
c    If I am the parent process then read in data start 
c    and manage other programs 

call pvmfparent( ptid ) 
if (ptid .eq. pvmnoparent) then 

c 
c    Get the name of the input file 

write(*,*)'Please enter the name of the constellation file:' 
read(*,*)  const_file 

c     const_file='teledesic21' 
c 
c    Check to make sure the input file is there 
c    Remove spaces at end of path 

i = 1 
do while(indata_path(i:i).ne.' ') 
i = i+1 
end do 
const_file = indata_path(1:i-1)//const_file 

c 
inquire(FILE=const_file,EXIST=fileex) 
if (.NOT.fileex) then 

write(*,*)'This file is not located in the CONST_INPUT dir' 
stop 

end if 

c    Read in the satellite data 
call rdconst(const_size, eltype, nintervals, intervals, 

1 nburns, burn_list, constopt_int, constopt_dbl, 
2 const_file) 

njobs = const_size 
c 

nhost = MAX_NUM_HOSTS 
do i=l,nhost 

call pvmfconfig( nhost, narch, dtid, host(i), arch, 
2 speed, info ) 

d print *,'My name was ',host(i), dtid 
d print *, 'I have '.nhost,' hosts' 

end do 
ntask = NTASK_PER_HOST*nhost 

c 
c    Check to make sure ntask is not larger than the njobs 

if (ntask.gt.njobs) then 
ntask = njobs 

end if 
c 
c    If arch is set to '*' then ANY configured machine is acceptable 

nodename = 'const_prop' 
arch = '*' 
if (ntask.gt.O) then 

call pvmfspawn( nodename, PvmTaskDefault, arch, ntask, 
1 tids, numt) 

else 
write(*,*) 'No jobs to spawn' 
stop 

end if 

c    Check for spawning problems 
d        do 100 i=0, ntask 
d print *,'tid',i,tids(i) 
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d 100     continue 

if( numt .It. nproc ) then 
print *, 'trouble spawning ',nodename 
print *, ' Check tids for error code' 
call shutdown( numt, tids ) 

endif 
c 
cc   Send constellation data 

call pvmfinitsend(PVMDEFAULT, bufid) 
call pvmfpack(INTEGER4, eltype, 1, 1, info) 
call pvmfpack(INTEGER4, nintervals, 1, 1, info) 
call pvmfpack(REAL8, intervals, nintervals*5, 1, info) 
call pvmfpack(INTEGER4,nburns,1,1,info) 
call pvmfpack(REAL8, burn_list, nburns*4, 1, info) 
call pvmfmcast(ntask,tids,MSGTAG,info) 

c    Setup for keeping track of jobs 
j obs_rec  = 0 
jobs_sent = 0 
k        =0 

c    Start loop to 
c    1] Send out jobs to all processors 
c    2] Wait til a job comes in and send out the next job 
c    3] Collect jobs not received 
c 

do while (jobs_rec.It.njobs) 
c 
c    If I have already sent enough jobs 

if (jobs_sent.ge.ntask) then 
call pvmfrecv(-l,-1,bufid) 
call pvmfunpack(INTEGER4, k, 1, 1, info) 
jobs_rec = jobs_rec + 1 
write(*,*) 'I received from ',host(k+l) 

end if 

cc   If I need to send a job 
c    Note: Jobs_sent = satno 

if (jobs_sent.It.njobs) then 
jobs_sent = jobs_sent + 1 
call pvmfinitsend(PVMDEFAULT, bufid) 
call pvmfpack(INTEGER4, k, 1, 1, info) 
call pvmfpack(INTEGER4, jobs_sent, 1, 1, info) 
call pvmfpack(INTEGER4, constopt_int(1,jobs_sent) 

1 INT_OPT_SIZE, 1, info) 
call pvmfpack(REAL8, constopt_dbl(1,jobs_sent), 

1 REAL_OPT_SIZE, 1, info) 
call pvmfsend(tids(k), MSGTAG, info) 
write(*,*) 'I sent satellite', jobs_sent,' to ' 

2 ,host(k+l) 
k = k +1 

end if 
c 

end do 
c 
c    Kill the slaves I spawned and then exit pvm myself 

call shutdown(numt,tids) 

c    If I was a slave receive the data and do work 
else 

c 
c    Generate the output filename with path 

212 



i = 1 
do while(outdata_path(i:i).ne.' ') 

i = i+1 
end do 
satdat_file = outdata_path(l:i-l)//satdat_file 
print *,satdat_file 

c 
cc    Receive the global broadcast data 

call pvmfrecv(ptid,MSGTAG,bufid) 
call pvmfunpack(INTEGER4, eltype, 1, 1, info) 
call pvmfunpack(INTEGER4, nintervals, 1, 1, info) 
call pvmfunpack(REAL8, intervals, nintervals*5, 1, info) 
call pvmfunpack(INTEGER4,nburns,1,1,info) 
call pvmfunpack(REAL8, bum_list, nburns*4, 1, info) 

c 
c    Do this loop always until I am killed 

do while (.TRUE.) 
c 
c    c   Receive the local satellite data 

call pvmfrecv(ptid, MSGTAG, bufid) 
call pvmfunpack(INTEGER4, k, 1, 1, info) 
call pvmfunpack(INTEGER4, satno, 1, 1, info) 
call pvmfunpack(INTEGER4, satopt_int, 

1 INT_OPT_SIZE, 1, info) 
call pvmfunpack(REAL8, satopt_dbl, 

1 REAL_OPT_SIZE, 1, info) 
c 
cc   Perform work 

call sat_prop(satno, eltype, nintervals, intervals, nburns, 
2 burn_list, satopt_int, satopt_dbl, satdat_file, 
3 indata_path) 

c 
cc   Send back my id so I can get more work 

call pvmfinitsend(PVMDEFAULT, bufid) 
call pvmfpack(INTEGER4, k, 1, 1, info) 
call pvmfsend(ptid, MSGTAG, info) 

c 
end do 

end if 
stop 
end 

c 
c 

subroutine shutdown( nproc, tids ) 
integer nproc, tids(*) 

c 
c    Kill all tasks I spawned and then myself 
c 

do 10 i=l, nproc 
write!*,*) 'Tid ', i,' was ',tids(i) 
call pvmfkill( tids(i), info ) 

10  continue 
call pvmfexit( info ) 
return 
end 
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B.1.2   Program const_opt 

ttinclude "array_sizes.h" 
#define NPARAMETERS    3 
»define MAX_NPROCS    200 
tdefine NTASK_PER_HOST 4 
#define MSGTAG        10 

subroutine const_opt(njobs,params,answers,ntask) 
c 
c    const_prop.F - a FORTRAN subroutine that distributes 
c    itself among a pvm virtural machine to run multiple instances 
c    of the DSST 
c 
c    Scott T Wallace, LT, USAF 
c    Master's Student, MIT Aero/Astro 
c 
c  
c 

implicit none 
c 
c    Include the FORTRAN PVM header file 

include '/Users/taz/scott/pvm3/include/fpvm3.h' 
c 

character*18 nodename, host(MAX_NUM_HOSTS) 
character*8 arch 
character*12 env_input 
character*MAX_PATH_LENGTH indata_path 
character*MAX_PATH_LENGTH const_file, satdat_file 

c 
integer*4 mytid, info 
integer*4 speed, narch, ntask 
integer*4 tids(MAX_NPROCS) 
integer*4 i, info, nproc, nhost 
integer*4 mytid, ptid, dtid 
integer*4 bufid 
integer*4 njobs, jobs_rec, jobs_sent 
integer*4 numt, k 
integer*4 const_size, nintervals 
integer*4 nburns, satno 
integer*4 constopt_int(INT_OPT_SIZE,MAX_NOM_SATS) 
integer*4 satopt_int(INT_OPT_SIZE) 
integer*4 eltype, jobno 

logical  fileex 

real * 8   intervals(5,MAX_NUM_INTERVALS) 
real*8    burn_list(4,MAX_NUM_BURNS) 
real*8    constopt_dbl(REAL_OPT_SIZE,MAX_NUM_SATS) 
real*8    satopt_dbl(REAL_OPT_SIZE) 
real*8    params(NPARAMETERS,*), answers)*) 

c      
c 
c    Get the pathnames for the defualt constellation 

env_input  = 'CONST_INPUT' 
call getenv(env_input,  indata_path) 

c 
c    Enter this process in PVM 

call pvmfmytidt mytid ) 
c 
c    If I am the parent process then read in data start 
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c    and manage other programs 
call pvmfparent( ptid ) 

c 
c     if (ptid .eq. pvmnoparent) then 

env_input = 'OPT_FILE' 
call getenv(env_input,const_file) 

c        const_file='tel_opt.14' 
c 
c    Check to make sure the input file is there 
c    Remove spaces at end of path 

i = 1 
do while(indata_path(i:i).ne.' ') 

i = i+1 
end do 
const_file = indata_path(1:i-1)//const_file 

c 
inquire(FILE=const_file,EXIST=fileex) 
if (.MOT.fileex) then 

write(*,*)'This file is not located in the CONST_INPUT dir' 
stop 

end if 

c    Read in the general satellite data 
call rdconst(const_size, eltype, nintervals, intervals, 

1 nburns, burn_list, constopt_int, constopt_dbl, 
2 const_file) 

c 
c do i=l,MAX_NUM_HOSTS 
c call pvmfconfig( nhost, narch, dtid, host(i), arch, 
c    2 speed, info ) 
d print *,'My name was ',host(i), dtid 
d print *, 'I have ',nhost,' hosts' 
c        end do 
c ntask = NTASK_PER_HOST 
c 
c    Check to make sure ntask is not larger than the njobs 

if (ntask.gt.njobs) then 
ntask = njobs 

end if 
c 
c    If arch is set to '*' then ANY configured machine is acceptable 

nodename = 'const_opt_slave' 
arch = '*' 
if (ntask.gt.O) then 

do i=l,ntask 
tids(i)=0 

end do 
numt=0 
call pvmfspawn( nodename, PVMTASKDEFAULT, arch, ntask, 

1 tids, numt) 
else 

write(*,*) 'No jobs to spawn' 
stop 

end if 

c    Check for spawning problems 
d        do 10 0 i=0, ntask 
d print *,'tid',i,tids(i) 
d 100    continue 

if( numt .It. nproc ) then 
print *, 'trouble spawning ',nodename 
print *, ' Check tids for error code' 
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call shutdown( numt, tids ) 
endif 

c 
cc   Send constellation data 

do i=l,ntask 
call pvmfinitsend(PVMDEFAULT, bufid) 
call pvmfpack(INTEGER4, eltype, 1, 1, info) 
call pvmfpack(INTEGER4, nintervals, 1, 1, info) 
call pvmfpack(REAL8, intervals, nintervals*5, 1, info) 
call pvmfpack(INTEGER4,nburns,1,1,info) 
call pvmfpack(REAL8, burn_list, nburns*4, 1, info) 
call pvmfsend(tids(i), MSGTAG, info) 

enddo 

c     Multicast has problems on petunia 
c     call pvmfmcast(ntask,tids,MSGTAG,info) 

c    Setup for keeping track of jobs 
jobs_rec = 0 
jobs_sent = 0 
k        = 1 

c    Start loop to 
c    1] Send out jobs to all processors 
c    2] Wait til a job comes in and send out the next job 
c    3] Collect jobs not received 
c 

do while (jobs_rec.lt.njobs) 
c 
c    If I have already sent enough jobs 

if (jobs_sent.ge.ntask) then 
jobs_rec = jobs_rec + 1 
call pvmfrecv(-1,-1,bufid) 
call pvmfunpack(INTEGER4, k, 1, 1, info) 
call pvmfunpack(INTEGER4, jobno, 1, 1, info) 
call pvmfunpack(REAL8, answers(jobno),1,1,info) 
call pvmffreebuf(bufid, info) 

d write(*,*) 'I received from ',host(k+l) 
end if 

c 
cc   If I need to send a job 
c    Note: Jobs_sent = satno 

if (jobs_sent.lt.njobs) then 
c    Add in the appropriate parameters 
c      1,4 is the eccentricity. The rest can be found in set_satopt.F 

jobs_sent = jobs_sent + 1 
constopt_dbl(3,1) = params(1,jobs_sent) 
constopt_dbl(4,1) = params(2,jobs_sent) 
constopt_dbl(5,1) = params(3,jobs_sent) 
call pvmfinitsend(PVMDEFAULT, bufid) 
call pvmfpack(INTEGER4, k, 1, 1, info) 
call pvmfpack(INTEGER4, jobs_sent, 1, 1, info) 
call pvmfpack(INTEGER4, jobs_sent, 1, 1, info) 
call pvmfpack(INTEGER4, constopt_int(1,1), 

1 INT_OPT_SIZE, 1, info) 
call pvmfpack(REAL8, constopt_dbl(1,1), 

1 REAL_OPT_SIZE, 1, info) 
call pvmfsend(tids(k), MSGTAG, info) 

d write(*,*) 'I sent satellite', jobs_sent,' to ' 
d    2 ,host(k+l) 

k = k +1 
end if 

c 
end do 
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c 
c    Kill the slaves I spawned and then exit pvm myself 

call shutdown(numt,tids) 
c 

return 
end 

c 
c 

subroutine shutdown( nproc, tids ) 

implicit none 

integer*4 info 
integer*4 nproc, tids(*) 
integer*4 i 

c 
c    Kill all tasks I spawned and then myself 
c 

do 10 i=l, nproc 
c        write(*,*) 'Tid ', i,' was ',tids(i) 

call pvmfkill( tids(i), info ) 
if (info.ne.O) then 
print *,'Error in pvmfexit '.info 
end if 

10  continue 
call pvmfexit( info ) 
if (info.ne.O) then 
print *,'Error in pvmfexit ',info 

end if 
return 
end 
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B.1.3   Program rdconst 

#include "array_sizes.h" 
subroutine rdconst(const_size, eltype, nintervals, intervals, 

1 nburns, burn_list, constopt_int, constopt_dbl, 
2 const_file) 

c  
c 
c     subroutine rdconst   - reads the constellation file 
c 
c    This program reads a constellation file 
c    for use in the multiple satellite propagator 
c 
c    Jan 95 
c 
c    Scott T Wallace, Lt, USAF 
c    MIT / Aero Astro Dept/ Draper Fellow 
c  

implicit none 
c 

character*!*) const_file 

integer*4 unitnum, numsats, nintervals, intervalnum 
integer*4 nburns, satno, eltype 
integer*4  const_size, is(INT_OPT_SIZE) 
integer*4  constopt_int(INT_OPT_SIZE,MAX_NUM_SATS) 
integer*4  i, j 
integer*4 status 

c 
logical  unit_unavailable 

c 
real*8     rs(REAL_OPT_SIZE) 
real*8    constopt_dbl(REAL_OPT_SIZE,MAX_NUM_SATS) 
real*8     intervals(5,MAX_NUM_INTERVALS) 
real*8    burn_list(4,MAX_NUM_BURNS) 

c 
include 'const_format' 

c 
c    Find the first available unit 

unitnum =10 
unit_unavailable = .true, 
do while  ( unit_unavailable ) 

unitnum = unitnum + 1 
inquire ( unit=unitnum, opened=unit_unavailable, 

2 iostat=status) 
end do 

c 
c    Open the constellation file 

open(unit=unitnum, file=const_file, status='old') 
c 
c    Read the initial, global, data 

read(unitnum,110) const_size, eltype 
read(unitnum,*) 
read(unitnum,100) nintervals 
do i=l,nintervals 

read(unitnum,200) intervalnum, intervals(1,intervalnum), 
1       intervals(2,intervalnum) 

read(unitnum,200) intervalnum, intervals(3,intervalnum), 
1       intervals(4,intervalnum) 

read(unitnum,300) intervalnum, intervals(5,intervalnum) 
end do 
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read(unitnum,100) nburns 
do i=l,nburns 

read(unitnum,400) burn_list(1,i), burn_list(2, 
1        burn_list(3,i), burn_list(4,i) 
end do 
read(unitnum,*) 

c 
c    Read the data for each satellite 

do i=l,const_size 
read(unit=unitnum,900) 
read(unit=unitnum,1000) 
read(unit=unitnum,2000) rs(3) ,rs(4),rs(5),rs(6),rs(7),rs(E 
read(unit=unitnum,3000) 
read(unit=unitnum,4000) 
read(unit=unitnum,5000) 
read(unit=unitnum,6000) 
read(unit=unitnum,7000) is(4), is(5), is(6), is(7) 
read(unit=unitnum,8000) 
read(unit=unitnum,9000) 
read(unit=unitnum,900) 

c 
do j =1,INT_OPT_SIZE 

constopt_int(j,i)=is(j) 
end do 
do j=l,REAL_OPT_SIZE 

constopt_dbl(j,i)=rs(j) 
end do 

c 
end do 

c 
close(unitnum) 

c 
return 
end 

satno, rs(l),   rs(2) 
rs(3), rs(4),rs(5),rs(6 
rs(9), rs(10) 
rs(ll) ,   rs(12) 
rs(13) 
is(l), is(2),   is(3) 
is(4), is(5),   is(6),   i 
is(8), is(9),   is(10) 
is(ll) ,   is(12),   is(13) 
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B.2 DSST Shell Listings 

B.2.1    Subroutine sat_prop.F 

c- 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

subroutine sat_prop propagates the satellite described 
in the argument list using the DSST. 

This subroutine invokes Draper semianalytic satellite theory 
to provide satellite precision mean elements and element rates 
at user request intervals. All input is through the argument 
list.  Output is directly into a file 

Jan 95 

Scott T Wallace, Lt, USAF 
MIT / Aero Astro Dept/ Draper Fellow 

Include files / This file reguiures preprocessing 

machine.h includes the machine specific definitions 
maxArrays.h includes the maximum array sizes 

c 
c 
c 
c 
c 
c 
#include  "machine.h" 
#include  "array_sizes.h" 
tdefine  NDATA_ITEMS 3 
c 

subroutine sat_prop (satno, eltype, nintervals, 
2    burn_list, satopt_int, satopt_dbl,outfile, 

c 

intervals, nburns, 
indata_path) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Argument list definitions 

satno l 

nintervals i 
intervals(5,*) i 

nburns i 
burn_list(4,*) i 
satopt_int(*) i 

satopt_dbl(*) 

burn_list (l,j) 
burn_list (2,j) 
burn_list (3,j) 
burn_list (4,j) 

i/o meaning 

satellite identification number 
number of intervals in interval array 
array containing times and deltas 

intervals(begining:  yyyymmdd(1,*), hhmmss(2,*) 
end: yyyymmdd(3,*), hhmmss(4,*), deltat(5,*)) 

number of burns in the burn array 
array containing impulsive burns deltas 
an array of integer values for satellite 
propagation global to the constellation 
an array of double precision values 
for satellite propagation global to the 
constellation 
time of impulsive velocity manuever 
delta velocity in the x (r of rtn) direction 
delta velocity in the y (t of rtn) direction 
delta velocity in the z (n of rtn) direction 

iatmos_preburn i 

iatmos_postburn i 

selector for preburn drag modification 
-1 => no drag,      0 => overestimate drag 
+1 => nominal drag, +2 => underestimate drag 
selector for postburn drag modification 

220 



c -1 => no drag,      0 => overestimate drag 
c +1 => nominal drag, +2 => underestimate drag 
c rho_one_hi     i  drag modification: overestimation percentage 
c rho_one_low    i  drag modification: underestimation percentage 
c epoch_ymd      o  epoch of mean elements file (yymmdd.) 
c epoch_hms      o  epoch of mean elements file (hhmmss.ssss) 
c 
c    
c 
c subroutines called =============================================== 
c 
c intanl        - helps initialize draper semianalytic theory 
c beganl        - starts the draper semianalytic theory 
c orbanl        - propagates using draper semianalytic theory 
c kepeqn        - makes kepler elements from equinoctials 
c julpak       - converts packed calendar time to Julian date 
c calpak        - converts Julian date to packed calendar time 
c 
c impulsive_burn_propagator - propagates with an 
c impulsive burn model 
c 
c aldiff        - computes the time difference a.l - utc 
c ddiv - division with remainder 
c read_epot     - read the potential model matching the number 
c used in the pme file 
c 
c 
c data types ======================================================= 
c 
c no implicit types 

implicit    none 

c 
c 

Character 

character 

Variables  = 

* (60)  filename 
character * (18)  buffername        /  'unini tialized' / 
character * (72)  text 
character * (1)   blank /  ' ' / 
character * (1)   comment /  'C / 
character * (*)   outfile. indata_path 

integer*4 satopt_int(*) 
integer*4 burn_cntr, data_cntr, i 
integer*4 nburns, nintervals, nrequest_ .times 
integer*4 satno, eltype 
integer*4 equm, mtod. mean 
integer*4 status, unitnum, k 

logical*4 
logical*4 

uni t_unavai1able 
burn_logical(MAX_NUM_TIMES) 

logical*4 setrtr 

real*8 
real*8 

intervals(5,*) 
satopt_dbl(*) 

real*8 request_times(MAX_NUM_TIMES) 
real*8 times(MAX_NUM_ TIMES) 
real*8 burn_times(MAX_NUM_BUKNS) 
real*8 burn_list(4,*) 
real*8 data(NDATA_ITEMS,MAX_NUM_TIMES) 
real*8 kepler(6) 

real*8 elmint(6), ymdint, hmsint 
real*8 pos(3), vel(3), oscelm(6) 
real*8 avrelm(6), pvdrv(6,300), avrdrv(6, 300) 
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real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 

constants 

parameter 
parameter 
parameter 
parameter 
parameter 
parameter 
parameter 

endorb, 
epoch_date, 
offset 
burn_delta_x 
dayjulO, 
hms, 
leapseconds, 
aldiff 
radians, 
rfactor, 
ymd_vec(MAX_NUM_TIMES), 
gha, ecefR(3 
calc_gha 

avrkep(6) , 
epoch_tod, 

burn_delta_y, 
secjulO, 
dayjul, 
quot 

degrees, 
forward 

avrate(6) 
obstim 

burn_delta_z 
ymd 
secjul 

infinity 

hms_vec(MAX_NUM_TIMES) 

radians 
degrees 
infinity 
forward 
equin 
mtod 

57.295779513082321   dOO ) 
0.017453292519943296 dOO ) 

99999999. d20 ) 
1. dO ) 
3 ) 
2 ) 
2      ) 

FORTRAN include modules 

include the satellite epoch data buffer 
include 'PMERN.CMN' 

BEGIN PROGRAM 

Convert to equinoctial elements 
if (eltype.eq.l) then 

rfactor = satopt_int(1) 
.false. 

= satopt_dbl(3) 
setrtr = 
kepler(1) 
kepler(2) 
kepler(3) 
kepler(4) 
kepler(5) 
kepler(6) 

= satopt_dbl(4) 
= satopt_dbl(5) 
= satopt_dbl(6) 
= satopt_dbl(7) 
= satopt_dbl(8) 

/radians 
/radians 
/radians 
/radians 

!Convert to radians 

call eqnkep(elmint,rfactor,kepler,setrtr) 
satopt_dbl(3) 
satopt_dbl(4) 
satopt_dbl(5) 
satopt_dbl(6) 
satopt_dbl(7) 
satopt_dbl(8) 

end if 

elmint(1) 
elmint(2) 
elmint(3) 
elmint(4) 
elmint(5) 
elmint(6) / degrees [Convert to degrees 

Call the routine which will take the options input in the argument 
list and put them in the PMERN common area and read in the 
potential field 
call set_satopt(satopt_dbl, satopt_int, status) 

setup satellite at epoch 
pme_cd     =  pme_cd * ( 1 
pme_rho_one =  0.dO 

dO + pme_rho_one ) 

find the first available unit 
unitnum = 10 
unit_unavailable = .true. 
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do while  ( unit_unavailable ) 
unitnum = unitnum + 1 
inquire ( unit=unitnum, opened=unit_unavailable, 

2       iostat=status, err=999 ) 
end do 

c 
c    open the gravity field file 

k = 1 
do while(indata_path(k:k).ne.' ') 
k = k+1 
end do 
filename = indata_path(l:k-l)//'epotfId' 

c     print *, filename 
open (unit=unitnum, file=filename, status='old', 

2 form='unformatted', access='direct', 
3 reel = 1050*WORDLENGTH ) 

c 
c    Call read_epot to read new gravity model and update common 

call read_epot(unitnum,status) 
if   ( status .ne. 0 )    goto 999 

c 
c    Close the input earth file 

close(unitnum) 

c    Extract epoch from the buffer and adjust the century 
epoch_date = pme_date 
epoch_tod = pme_time 
ymdint    = epoch_date-19000000.dO 
hmsint    = epoch_tod 

c 
c    Call julpak to obtain Julian date at epoch 

call julpak (dayjulO,secjulO,ymdint,hmsint) 
c 
c    Extract epoch equinoctial elements from the buffer 

elmint (1)  = pme_els_equin (1) 
elmint (2)  = pme_els_equin (2) 
elmint (3)  = pme_els_equin (3) 
elmint (4)  = pme_els_equin (4) 
elmint (5)  = pme_els_equin (5) 
elmint (6)  = pme_els_equin (6) * degrees 
rfactor    = pme_retro 

c 
c    Call intanl to initialize force models 

call intanl (elmint,rfactor,equin.mtod,mean,ymdint,hmsint) 
c 
c    Call beganl to start the semianalytic integrator 

call beganl (forward) 
c 
c    Set integrator time to zero 

offset = 0. dO 
c 
c    Make a list of request times (in seconds from epoch) 
c    Check all request times to insure they come after the epoch 

call crrequest_times(dayjulO, secjulO, intervals, nintervals, 
1    request_times, nrequest_times, status) 

c 
c    Assign all the burn times to a vector 

do i=l,nburns 
bum_times (i) =burn_list (4 , i) 

end do 
c 
c     Sort the request times & burn times together 

call sort_times(burn_times, nburns, request_times, 
$    nrequest_times,times, burn_logical, nrequest_times+nburns, 
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$    Status) 
c 
c    Create a separate cn.tr to keep track of burns and amount of output 

burn_cntr = 1 
data_cntr = 1 

c 
c    For each request time and burn time 

do i=l,nrequest_times+nburns 
c 
c    call orbanl to propagate to the next time (a.l offset) 

secjul    = secjulO + times(i) 
call ddivtquot,secjul,secjul,86400.dO, 43200.dO) 
dayjul    = dayjulO + quot 
leapseconds= aldiff(dayjul,secjul) - aldiff(dayjulO,secjulO) 
obstim    = times(i) + leapseconds 
call orbanl ( pos,vel,oscelm,avrelm,avrate, 

2       pvdrv,avrdrv,endorb,obstim-offset ) 
c 
c    If time was a burn, do a burn and restart propagator 
c    at the burn time 

if (burn_logical(i)) then 
c 
c    extract burn parameters from the burn list 

burn_delta_x       = burn_list(l,burn_cntr) / 1000.OdO 
burn_delta_y       = burn_list(2,burn_cntr) / 1000.OdO 
burn_delta_z       = burn_list(3,burn_cntr) / 1000.OdO 

c 
c    call impulsive_burn_propagator to add the delta_v to the averaged 
c    elements 

call impulsive_burn_propagator (bum_delta_x, 
1 burn_delta_y, 
2 burn_delta_z, avrelm) 

c 
c    call calpak for utc calendar time 

secjul    = secjulO + obstim - leapseconds 
call  ddiv (quot,secjul,secjul,86400.dO,43200.dO) 
dayjul    = dayjulO + quot 
leapseconds= aldiff(dayjul,secjul) - aldiff(dayjulO,secjulO) 
call calpak (ymd,hms,dayjulO,secjulO+obstim-leapseconds) 

c 
c 
c    Call intanl to reinitialize force models at utc time 
c    and reset propagator epoch to burn time 

call intanl (avrelm,rfactor,equin,mtod,mean,ymd,hms) 
c 
c    Call beganl to restart the semianalytic integrator 

call beganl (forward) 
c 
c    Set integrator time to time at end of burn, as we just restarted 
c    it. 

offset = obstim 
c 
c    Add one to the burn counter 

burn_cntr = burn_cntr + 1 

c    End the work for a burn, return to next time 
end if 

c 
c    if time was a request time store state 

if (.not.burn_logical(i)) then 
c 
c    Call kepeqn to obtain classical elements at request time 

call kepeqn (avrkep,avrelm,rfactor) 
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c    Call calpak for utc calendar time to output back to the user 
secjul    = times(i) 
call  ddiv (quot,secjul,secjul,86400.dO,43200.dO) 
dayjul    = dayjulO + quot 
leapseconds= aldiff(dayjul,secjul) - aldiff(dayjulO,secjulO) 
call calpak (ymd,hms,dayjulO,secjulO+obstim-leapseconds) 

c 
c    Evaluate the GHA angle 

gha=calc_gha(ymd,hms) 
c 
c    Rotate to ecef coordinates 

ecefR(l) = cos(gha)*pos(l) + sin(gha)*pos(2) 
ecefR(2) = -1.0*sin(gha)*pos(l) + cos(gha)*pos(2) 
ecefR(3) = pos(3) 

c 
c    Output the data 
c 
c data(l,data_cntr) = avrkep(l) 
c data(2,data_cntr) = avrkep(2) 
c data(3,data_cntr) = avrkep(3) 
c data(4,data_cntr) = avrkep(4) 
c data(5,data_cntr) = avrkep(5) 
c data(6,data_cntr) = avrkep(6) 
c data(7,data_cntr) = ymd 
c data(8,data_cntr) = hms 
c 

data(l,data_cntr) = ecefR(l) 
data(2,data_cntr) = ecefR(2) 
data(3,data_cntr) = ecefR(3) 

c 
if (satno.eq.l) then 

ymd_vec(data_cntr) = ymd 
hms_vec(data_cntr) = hms 

end if 
c 

data_cntr = data_cntr + 1 
c 
c    End the request time option 

end if 
c 
c    Return to propagate to the next time 

end do 
c 
c    Send the data to the data file 

call outdat(satno,data,nrequest_times,NDATA_ITEMS,outfile) 
c 
c    Write out the time information 

if (satno.eq.l) then 
open(unit=37,file='ymdhms',status='unknown') 
do i=l,data_cntr 
write(37,'(2f25.16)')ymd_vec(i),hms_vec(i) 

end do 
close(37) 

end if 
c 
c    mark buffer undefined 
999  buffername = 'uninitialized' 

c 
c    return with error status 

text = 'i/o error in orbit_propagator_services. status = 
write (*,'(i4)')   status 
return 

c 
end 
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B.2.2   Subroutine sat_opt.F 

#include "machine.h" 
#include "array_sizes.h" 
»define MAXDELTANOD 0.43630d0 
#define MAXDELTAARG 0.52360d0 
#define MAXDELTAECC 0.00070d0 
#define    SSRATE     0.0172027910d0 
»define   TWOPI      6.2831853070d0 
»define   PIE        3.14159270d0 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

subroutine sat_opt propagates the satellite described 
in the argument list using the DSST. 

This subroutine invokes Draper semianalytic satellite theory 
to provide satellite precision mean elements and element rates 
at user request intervals. All input is through the argument 
list.  Output is through the argument list. 

Jan 95 

Scott T Wallace, Lt, USAF 
MIT / Aero Astro Dept/ Draper Fellow 

Include files / This file requiures preprocessing 

machine.h includes the machine specific definitions 
maxArrays.h includes the maximum array sizes 

subroutine sat_opt (satno, eltype, nintervals, intervals, nburns, 
2 burn_list,lc_satopt_int,lc_satopt_dbl,outfile,indata_path, 
3 optval) 

Argument list definitions 

satno l 

nintervals i 
intervals(5,*) i 

nburns i 
burn_list(4, *) i 
satopt_int(*) i 

satopt_dbl(*) 

burn_list (l,j) 
burn_list (2,j) 
burn_list (3,j) 
burn_list (4,j) 

i/o meaning 

satellite identification number 
number of intervals in interval array 
array containing times and deltas 

intervals(begining:  yyyymmdd(1,*), hhmmss(2,*) 
end: yyyymmdd(3,*), hhmmss(4,*), deltat(5,*)) 

number of burns in the burn array 
array containing impulsive burns deltas 
an array of integer values for satellite 
propagation global to the constellation 
an array of double precision values 
for satellite propagation global to the 
constellation 
time of impulsive velocity manuever 
delta velocity in the x (r of rtn) direction 
delta velocity in the y (t of rtn) direction 
delta velocity in the z (n of rtn) direction 

iatmos_preburn  i selector for preburn drag modification 
-1 => no drag,      0 => overestimate drag 
+1 => nominal drag, +2 => underestimate drag 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

iatmos_postburn i 

rho_one_hi 
rho_one_low 
epoch_ymd 
epoch_hms 

selector for postburn drag modification 
-1 => no drag,      0 => overestimate drag 
+1 => nominal drag, +2 => underestimate drag 
drag modification: overestimation percentage 
drag modification: underestimation percentage 
epoch of mean elements file (yymmdd.) 
epoch of mean elements file (hhmmss.ssss) 

subroutines called 

intanl 
beganl 
orbanl 
kepeqn 
julpak 
calpak 

helps initialize draper semianalytic theory 
starts the draper semianalytic theory 
propagates using draper semianalytic theory 
makes kepler elements from equinoctials 
converts packed calendar time to Julian date 
converts Julian date to packed calendar time 

impulsive_burn_propagator propagates with an 
impulsive burn model 

aldiff 
ddiv 
read_epot 

data types 

computes the time difference a.l - utc 
division with remainder 
read the potential model matching the number 
used in the pme file 

no implicit types 
implicit    none 

Character Variables 

character * (60) filename 
character * (18) buffername        / 
character * (72) text 
character * (1) blank / 
character * (1) comment / 
character * (*) outfile, indata_path 

'uninitialized' 

1 c' 

integer*4        satopt_int(INT_OPT_SIZE),lc_satopt_int(INT_OPT_SIZE) 
integer*4 burn_cntr,     data_cntr,       i 
integer*4 nburns,        nintervals,      nreguest_times 
integer*4 satno, eltype 
integer*4 equin, mtod, mean 
integer*4 status,        unitnum, k 

logical*4 unit_unavailable 
logical*4 burn_logical(MAX_NUM_TIMES) 
logical*4 setrtr 

real*8 intervals(5,*) 
real*8 satopt_dbl(REAL_OPT_SIZE) 
real*8 lc_satopt_dbl(REAL_OPT_SIZE) 
real*8 reguest_times(MAX_NUM_TIMES) 
real*8 times(MAX_NUM_TIMES) 
real* 8 burn_times(MAX_NUM_BURNS) 
real*8 burn_list(4,*) 
real*8 kepler(6) 

real*8 
real*8 

elmint(6) 
pos(3), 

ymdint, 
vel(3), 

hmsint 
oscelm(6) 
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real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 
real*8 

constants 

parameter 
parameter 
parameter 
parameter 
parameter 
parameter 
parameter 

avrelm(6), 
endorb, 
epoch_date, 
offset 
burn_de 1 ta_x, 
dayjulO, 
hms, 
leapseconds, 
aldiff 
radians, 
rfactor, 
optval 
ideal, 

radians 
degrees 
infinity 
forward 
eguin 
mtod 
mean 

avrdrv(6,3 00) 
avrate(6) 
obstim 

burn_delta_z 
ymd 
secjul 

infinity 

pvdrv(6,300), 
avrkep(6), 
epoch_tod, 

burn_delta_y, 
secjulO, 
dayjul, 
quot 

degrees, 
forward 

noddev 

57.295779513082321   dOO ) 
0.017453292519943296 dOO ) 

99999999. d20 ) 
1. dO ) 
3 ) 
2 ) 
2      ) 

FORTRAN include modules 

include the satellite epoch data buffer 
include •PMERN.CMN' 

BEGIN PROGRAM 

Copy argument list into local variables 
do i=l,REAL_OPT_SIZE 

s atopt_dbl(i)= 1c_s atopt_dbl(i) 
end do 

do i=l,INT_OPT_SIZE 
satopt_int(i)= lc_satopt_int(i) 

end do 

Convert to equinoctial elements 
if (eltype.eq.1) then 

rfactor = satopt_int(1) 
.false. 

= satopt_dbl(3) 
setrtr = 
kepler(1) 
kepler(2) 
kepler(3) 
kepler(4) 
kepler(5) 
kepler(6) 

satopt_dbl(4) 
satopt_dbl(5) 
satopt_dbl(6) 
satopt_dbl(7) 
satopt_dbl(8) 

/radians 
/radians 
/radians 
/radians 

!Convert to radians 

call eqnkep(elmint,rfactor,kepler,setrtr) 
satopt_dbl(3) 
satopt_dbl(4) 
satopt_dbl(5) 
satopt_dbl(6) 
satopt_dbl(7) 
satopt_dbl(8) 

end if 

elmint(1) 
elmint(2) 
elmint(3) 
elmint (4) 
elmint(5) 
elmint(6) / degrees !Convert to degrees 

Call the routine which will take the options input in the argument 
list and put them in the PMERN common area and read in the 
potential field 
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call set_satopt(satopt_dbl, satopt_int, status) 

c    setup satellite at epoch 
pme_cd     = pme_cd * ( 1.dO + pme_rho_one ) 
pme_rho_one =  0.dO 

c 
c    find the first available unit 

unitnum = 20 
unit_unavailable = .true. 
do while  ( unit_unavailable ) 

unitnum = unitnum + 1 
inquire ( unit=unitnum, opened=unit_unavailable, 

2       iostat=status) 
end do 

c 
c    open the gravity field file 

k = 1 
do while(indata_path(k:k).ne.' ') 
k = k+1 
end do 
filename = indata_path(l:k-l)//'epotfId' 
open (unit=unitnum, file=filename, status='old', 

2 form='unformatted', access='direct', 
3 reel = 1050*WORDLENGTH,IOSTAT=k) 

c 
c    Call read_epot to read new gravity model and update common 

call read_epot(unitnum,status) 
if   ( status .ne. 0 )  then 
print *,'Error in opening epotfId' 
stop 

end if 
c 
c    Close the input earth file 

close(unitnum) 

c    Extract epoch from the buffer and adjust the century 
epoch_date = pme_date 
epoch_tod = pme_time 
ymdint    = epoch_date-19000000.dO 
hmsint    = epoch_tod 

c 
c    Call julpak to obtain Julian date at epoch 

call julpak (dayjulO,secjulO,ymdint,hmsint) 
c 
c    Extract epoch equinoctial elements from the buffer 

elmint (1)  = pme_els_equin (1) 
elmint (2)  = pme_els_equin (2) 
elmint (3)  = pme_els_equin (3) 
elmint (4)  = pme_els_equin (4) 
elmint (5)  = pme_els_equin (5) 
elmint (6)  = pme_els_equin (6) * degrees 
rfactor    = pme_retro 

c 
c    Call intanl to initialize force models 

call intanl (elmint,rfactor,equin,mtod,mean,ymdint,hmsint) 
c 
c    Call beganl to start the semianalytic integrator 

call beganl (forward) 
c 
c    Set integrator time to zero 

offset = 0. dO 
c 
c    Make a list of request times (in seconds from epoch) 
c    Check all request times to insure they come after the epoch 
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call crrequest_times(dayjulO, secjulO, intervals, nintervals, 
1 request_times, nrequest_times, status) 

c 
c    Assign all the burn times to a vector 

do i=l,nburns 
burn_times(i)=burn_list(4,i) 

end do 
c 
c    Sort the request times & burn times together 

call sort_times(burn_times, nburns, request_times, 
$    nreguest_times,times, burn_logical, nrequest_times+nburns, 
$    status) 

c 
c    Create a separate cntr to keep track of burns and amount of output 

burn_cntr = 1 
data_cntr = 1 

c 
c    For each request time and burn time 

do i=l,nrequest_times+nburns 

c 
c    call orbanl to propagate to the next time (a.l offset) 

secjul    = secjulO + times(i) 
call ddiv(quot,secjul,secjul,86400.dO,43200.dO) 

dayjul    = dayjulO + quot 
leapseconds= aldiff(dayjul,secjul) - aldiff(dayjulO,secjulO) 
obstim    = times(i) + leapseconds 
call orbanl ( pos,vel,oscelm,avrelm,avrate, 

2 pvdrv,avrdrv,endorb,obstim-offset ) 

c 
c    If time was a burn, do a burn and restart propagator 
c    at the burn time 

if (burn_logical(i)) then 
c 
c    extract burn parameters from the burn list 

burn_delta_x = burn_list(l,burn_cntr) / 1000.OdO 
burn_de1ta_y = burn_li s t(2,burn_cntr) / 1000.OdO 
burn_delta_z       = burn_list(3,burn_cntr) / 1000.OdO 

c 
c    call impulsive_burn_propagator to add the delta_v to the averaged 
c    elements 

call impulsive_burn_propagator(burn_delta_x, 
1 burn_de1ta_y, 
2 burn_delta_2, avrelm) 

c 
c    call calpak for utc calendar time 

secjul    = secjulO + obstim - leapseconds 
call   ddiv (quot,secjul,secjul,86400.dO,43200.dO) 
dayjul    = dayjulO + quot 
leapseconds= aldiff(dayjul,secjul) - aldiff(dayjulO,secjulO) 
call calpak (ymd,hms,dayjulO,secjulO+obstim-leapseconds) 

c 
c 
c    Call intanl to reinitialize force models at utc time 
c    and reset propagator epoch to burn time 

call intanl (avrelm,rfactor,equin.mtod,mean,ymd,hms) 

c 
c    Call beganl to restart the semianalytic integrator 

call beganl (forward) 
c 
c    Set integrator time to time at end of burn, as we just restarted 
c    it. 

offset = obstim 
c 
c    Add one to the burn counter 

230 



burn_cntr = burn_cntr + 1 

c    End the work for a burn, return to next time 
end if 

c 
c    if time was a request time store state 

if (.not.burn_logical(i)) then 
c 
c    Call kepeqn to obtain classical elements at request time 

call kepeqn (avrkep,avrelm,rfactor) 
c 
c    Call calpak for utc calendar time to output back to the user 

secjul    = secjulO + obstim - leapseconds 
call  ddiv (quot,secjul,secjul,86400.dO,43200.dO) 
dayjul    = dayjulO + quot 
leapseconds= aldiff(dayjul,secjul) 

& - aldiff(dayjulO,secjulO) 
call calpak (ymd,hms,dayjulO,secjulO+obstim-leapseconds) 

c 
c    Record the total change in eccentricity 
c 
c      Calculate the ideal sunsync value 

ideal = O.OdO 
ideal = kepler(4)+(SSRATE)*{(dayjul-dayjulO)+ 

& (secjul-secjulO)/86400.0d0) 
ideal = dmod(ideal,TWOPI) 

c 
c      Calculate the deviation 

noddev = abs(ideal-avrkep(4)) 
if (noddev.gt.PIE) then 
noddev = TWOPI - noddev 

end if 

c      Evaluate the cost function 
c       optval = abs(avrkep(2)-kepler(2))/MAXDELTAECC 
c i      +  abs(avrkep(5)-kepler(5))/MAXDELTAARG 
c i       +   3*noddev/MAXDELTANOD 
c i      +   optval 
c 
c      Evaluate the cost function 

cptval = noddev/MAXDELTANOD + optval 
c      Evaluate the cost function 
c        ertval = abs(avrkep(3)-kepler(3)) 
c 
c E:.:i tne request time option 

P.eturr. to propagate to the next time 
end do 

return 

end 
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B.2.3 Subroutine set_satopt.F 

subroutine set_satopt(satopt_dbl, satopt_int, status) 

subroutine set_satopt  - Sets the values in common area PMERM 
to run the satellite propagator 

set_satopt is necessary to keep all the options in two arrays 
in higher level programs 

Jan 95 

Scott T Wallace, Lt, USAF 
MIT / Aero Astro Dept/ Draper Fellow 

real*8 satopt_dbl(*) 
integer*4 satopt_int(*) 
integer*4 status 

implicit none 

include 'PMERN.CMN' 

pme. 
pme. 
pme. 
pme. 
pme. 
pme. 
pme. 
pme. 
pme. 
pme. 
pme. 
pme. 
pme. 

.date 
_time 
_els_eguin(l) 
_els_equin(2) 
_els_equin(3) 
_els_equin(4) 
_els_equin(5) 
_els_equin(6) 
.cd 
_rho_one 
.scmass 
.scarea 
_stepsize 

satopt. 
satopt. 
satopt. 
satopt. 
satopt. 
satopt. 
satopt. 
satopt. 
satopt. 
satopt. 
satopt. 
satopt. 
satopt. 

.dbl(l) 
_dbl(2) 
_dbl(3) 
_dbl(4) 
.dbl(5) 
_dbl(6) 
.dbl{7) 
.dbl(8) 
_dbl(9) 
.dbl(10) 
.dbl(ll) 
.dbl(12) 
.dbl(13) 

pme_retro = satopt_int(1) 
pme_atmos_model = satopt_int(2) 
pme_potential_model  = satopt_int(3) 
pme_nmax = satopt_int(4) 
pme_mmax = satopt_int(5) 
pme_izonal = satopt_int(6) 
pme_ij2j2 = satopt_int(7) 
pme_nmaxrs = satopt_int(8) 
pme_mmaxrs = satopt_int(9) 
pme_ithird = satopt_int(10) 
pme_inddrg = satopt_int(11) 
pme_iszak = satopt_int(12) 
pme_indsol = satopt_int(13) 

return 
end 
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B.2.4    Subroutine crrequest_times.F 

subroutine crrequest_times(dayjulO, secjulO, intervals, 
$    nintervals, request_times, nrequest_times, status) 

c 
c  
c 
c    subroutine crrequest_times - Create Request times 
c 
c    This subroutine creates the request times in seconds from 
c    epoch from the intervals given in the intervals argument. 
c 
c    Jan 95 
c 
c    Scott T Wallace, Lt, USAF 
c    MIT / Aero Astro Dept/ Draper Fellow 
c  
c 

real*8 dayjulO 
real*8 secjulO 
real*8 intervals(5,*) 
real*8 request_times(*) 
real*8 current_time 
real*8 daybeg, dayend 
real*8 secbeg, secend 
real*8 deltat 
real*8 begint_sec, endint_sec 
real*8 day_seconds 

integer nintervals 
integer nrequest_times 
integer status 
integer i 
integer time_cntr 

parameter (day_seconds = 86400.0) 

implicit none 

c 
c    Initialize variables 

time_cntr = 1 
nrequest_times=0 

c 
c    For each interval 

do i=l,nintervals 

c    Call julpak to obtain Julian date at interval beginning and end 
call julpak (daybeg, secbeg, intervals(1,i)-19000000.0D0, 

$       intervals(2,i)) 
call julpak (dayend, secend, intervals(3,i)-19000000.0D0, 

$       intervals(4,i)) 

deltat = intervals(5, i) 

begint_sec = (daybeg-dayjulO)*DAY_SECONDS + secbeg-secjulO 
endint_sec = (dayend-dayjulO)*DAY_SECONDS + secend-secjulO 

current_time = begint_sec 
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do while (current_time.lt.endint_sec) 
reguest_times(time_cntr)=current_time 
current_time = current_time + deltat 
nrequest_times=time_cntr 
time_cntr = time_cntr+l 

end do 
end do 
end 
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B.2.5    Subroutine sort times.F 

#ifdef DEBUG 
tdefine NATEST 3 
«define NBTEST 2 
#define NTESTTIMES (NATEST+NBTEST) 

program test_times 

integer nra,   nrb,   nout, i, 
c 

real*8 ra(NATEST),  rb(NBTEST), 
c 

logical lout(NTESTTIMES) 
c 

implicit none 

status 

rout(NTESTTIMES) 

nra = NATEST 
nrb = NBTEST 
nout = nra+nrb 

do i = 1,NATEST 
ra( i)=i*i 

end do 

do i = 1,NBTEST 
rb( i)=i*i*i 

end do 

call sort_times(ra, nra, rb, nrb, rout, lout, 
$    nout, status) 

end 

#endif 
subroutine sort_times(ra, nra, rb, nrb, rout, lout, 

$    nout, status) 

subroutine sort_times  - Puts two arrays into one long array- 
sorts the long array along with a logical array describing where 
the array came from (TRUE if first array, FALSE if second) 

JAN 95 

Scott T Wallace, Lt, USAF 
MIT / Aero Astro Dept/ Draper Fellow 

integer nra, nrb,   nout, i, status 

real*8  ra(*),  rb(*),  rout(nout) 

logical lout(nout) 

implicit none 

do i = 1,nra 
rout(i) = ra(i) 
lout(i) = .TRUE. 

end do 
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do i = nra+l,nout 
rout(i) = rb(i-nra) 
lout(i) = .FALSE. 

end do 

call sort2(nout, rout, lout) 

return 
end 

SUBROUTINE SORT2 (N, RA, RB) 

integer n,l,ir,i,j 
real*8 ra,rra 
logical rb,rrb 

implicit none 

DIMENSION RA(N),RB(N) 
L=N/2+l 
IR=N 

10   CONTINUE 
IF(L.GT.1)THEN 

L=L-1 
RRA=RA(L) 
RRB=RB(L) 

ELSE 
RRA=RA(IR) 
RRB=RB(IR) 
RA(IR)=RA(1) 
RB(IR)=RB(1) 
IR=IR-1 
IF(IR.EQ.1)THEN 
RA(1)=RRA 
RB(1)=RRB 
RETURN 

ENDIF 
ENDIF 
I=L 
J=L+L 

20      IF(J.LE.IR)THEN 
IF(J.LT.IR)THEN 

IF(RA(J) .LT.RA(J+1) ) J=J+1 
ENDIF 
IF(RRA.LT.RA(J))THEN 
RA(I)=RA(J) 
RB(I)=RB(J) 
I=J 
J=J+J 

ELSE 
J=IR+1 

ENDIF 
GO TO 20 
ENDIF 
RA (I) =RRA 
RB(I)=RRB 

GO TO 10 
END 
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B.3 Example PVM/DSST Input File 

N Satellites: 21 ElType 

nintervals: 1 
Begin interval 1 19950401 0 000000.0 
End  interval 1 20050401 0 0.00 
Deltat interval 1 432000.0 

nburns 

Satellite Number:   1 Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements 0.7073140000000000D+04 
0.1180000000000000D-02 
0.9814200000000000D+02 
0.0000000000000000D+00 
0.9000000000000000D+02 
0.0000000000000000D+00 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 Potent Mdl: 4 
21 Izonal: 1 
21 Ithird: 1 
2 Ind Sol: 1 

IJ2J2: 

Satellite Number: 2  Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements 0.7073 640000000000D+04 
0.1180000000000000D-02 
0.9814400000000000D+02 
0.9500000000000000D+01 
0.9000000000000000D+02 
O.00OO0OO0O00O000OD+O0 

CD: 2.20000000 Rho One: 
S/C Mass: 800.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00014400 

Retro: 1 Atmos Mdl: 1 
Nmax: 21 Mmax: 21 
Nmaxrs: 21 Mmaxrs: 21 
Ind Drg: 2 Iszak: 2 

Potent Mdl: 4 
Izonal: 1  IJ2J2: 
Ithird 1 
Ind Sol: 1 

Satellite Number:   3  Epoch Date: 19950401.0  Epoch Time: 0.00 

Keplerian  Elements 0.7074140000000000D+04 
0.1180000000000000D-02 
0.9814 600000000000D+02 
0.1900 000000000000D+02 
0.900 000000OOOOOOOD+02 
0.000000OOOOOOOOOOD+00 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 
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Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Satellite Number:   4  Epoch Date: 19950401.0 Epoch Time:   0.00 

Keplerian  Elements 0.7074640000000000D+04 
0.1180000000000000D-02 
0.9814800000000000D+02 
0.2850000000000000D+02 
0.9000000000000000D+02 
O.O000O000OO0OOO00D+O0 

CD: 2.20000000 Rho One: 
S/C Mass: 800.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00014400 

Retro: 1 Atmos Mdj :   1 Potent Mdl:  4 
Nmax: 21 Mmax: 21 Izonal:      1  IJ2J2: 1 
Nmaxrs: 21 Mmaxrs: 21 Ithird:     1 
Ind Drg: 2 Iszak: 2 Ind Sol:    1 

Satellite Number:   5 Epoch Date: 19950401.0  Epoch Time: 

Keplerian Elements : 0.7075140000000000D+04 
0.1180000000000000D-02 
0.9815000000000000D+02 
0.3 800000000000000D+02 
0.9000000000000000D+02 
0.0000000000000000D+00 

0.00 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 Potent Mdl: 4 
21 Izonal: 1 
21 Ithird: 1 
2 Ind Sol: 1 

IJ2J2: 

Satellite Number: 6  Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements 0.7075640000000000D+04 
0.1180000000000000D-02 
0.9815200000000000D+02 
0.4750000000000000D+02 
0.9000000000000000D+02 
O.00OO00O000000000D+0O 

CD: 2.20000000 Rho One: 0.00000000 
S/C Mass: 800.00000000 S/C Area: 0.00014400 
Integrator Step: 43200.00000000 

Retro: 1 Atmos Mdl:   1 Potent Mdl: 4 
Nmax: 21 Mmax:       21 Izonal: 1 IJ2J2:   1 
Nmaxrs: 21 Mmaxrs:    21 Ithird: 1 
Ind Drg: 2 Iszak:       2 Ind Sol: 1 
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Satellite Number:  7  Epoch Date: 19950401.0 Epoch Time:   0.00 

Keplerian  Elements 0.707 6140000000000D+04 
0.1180000000000000D-02 
0.9815400000000000D+02 
0.5700000000000000D+02 
0.9000000000000000D+02 
0.OO00000000O0000OD+00 

CD:                   2 20000000 Rho One: 0.00000000 
S/C Mass:          800 00000000 S/C Area: 0.00014400 
Integrator Step: 43200 00000000 

Retro:      1 Atmos Mal:   1 Potent Mdl:  4 
Nmax:      21 Mmax: 21 Izonal:      1 IJ2J2:   1 
Nmaxrs:   21 Mmaxrs: 21 Ithird:     1 
Ind Drg:    2 Iszak: 2 Ind Sol:     1 

Satellite Number:   8 Epoch Date: 19950401.0 Epoch Time: 

Keplerian  Elements : 0.7076640000000000D+04 
0.1180000000000000D-02 
0.9815600000000000D+02 
0.6650000000000000D+02 
0.9000000000000000D+02 
0.OO00OO000000O00OD+00 

0.00 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2 : 

Satellite Number: 9  Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements 0.7077140000000000D+04 
0.1180000000000000D-02 
0.9815800000000000D+02 
0.7600000000000000D+02 
0.9000000000000000D+02 
O.0O0000O0OOOOOOOOD+00 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Satellite Number:  10  Epoch Date: 19950401.0 Epoch Time:   0.00 

Keplerian  Elements 0.707764000000000OD+O4 
0.1180000000000OOOD-02 
0.9816000000000 00OD+O2 
0.8550000000000000D+02 
0.9000000000000000D+02 
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O.OOOOOOOOOOOOOOOOD+00 

CD: 0.00000000 Rho One: 
S/C Mass: 800.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Satellite Number:  11  Epoch Date: 19950401.0  Epoch Time: 0.00 

Keplerian  Elements 0.7078140000000000D+04 
0.1180000000000000D-02 
0.9816200000000000D+02 
0.9500000000000000D+02 
0.9000000000000000D+02 
0.00OO00O000000000D+00 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 Potent Mdl: 4 
21 Izonal: 1 
21 Ithird: 1 
2 Ind Sol: 1 

IJ2J2 : 

Satellite Number:  12  Epoch Date: 19950401.0  Epoch Time: 0.00 

Keplerian  Elements 0.7078640000000000D+04 
0.1180000000000000D-02 
0.9816400000000000D+02 
0.1045000000000000D+03 
0.9000000000000000D+02 
O.O0OO0000OOOOO0OOD+OO 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 Potent Mdl: 4 
21 Izonal: 1 
21 Ithird: 1 
2 Ind Sol: 1 

IJ2 J2: 

Satellite Number:  13  Epoch Date: 19950401.0  Epoch Time: 0.00 

Keplerian  Elements 0.7079140000000000D+04 
0.1180000000000000D-02 
0.9816600000000000D+02 
0.1140 000000000000D+03 
0.9000000000000000D+02 
0.0000000000000000D+00 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

13200.00000000 

0.00000000 
0.00014400 

Retro: 1 Atmos Mdl: 1  Potent Mdl: 
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Nmax:      21 Mmax:       21 Izonal:     1  IJ2J2:   1 
Nmaxrs:   21 Mmaxrs:    21 Ithird:     1 
Ind Drg:    2 Iszak:       2 Ind Sol:    1 

Satellite Number:  14  Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements : 0.7079640000000000D+04 
0.1180000000000000D-02 
0.9816800000000000D+02 
0.1235000000000000D+03 
0.9000000000000000D+02 
0.O0OO0OOOOO0OOO0OD+OO 

CD:                 2.20000000 Rho One:         0.00000000 
S/C Mass:         800.00000000 S/C Area:        0.00014400 
Integrator Step: 43200.00000000 

Retro:      1 Atmos Mdl:   1 Potent Mdl:  4 
Nmax:      21 Mmax:       21 Izonal:      1  IJ2J2:   1 
Nmaxrs:   21 Mmaxrs:    21 Ithird:      1 
Ind Drg:   2 Iszak:      2 Ind Sol:    1 

Satellite Number:  15 Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements : 0.7080140000000000D+04 
0.1180000000000000D-02 
0.9817000000000000D+02 
0.133 0000000000000D+03 
0.9000000000000000D+02 
0.00OOO00OO00OOO0OD+OO 

CD:                  2.20000000 Rho One:         0.00000000 
S/C Mass:          800.00000000 S/C Area:        0.00014400 
Integrator Step: 43200.00000000 

Retro:      1 Atmos Mdl:   1 Potent Mdl:  4 
Nmax:     21 Mmax:      21 Izonal:      1  IJ2J2:   1 
Nmaxrs:    21 Mmaxrs:     21 Ithird:      1 
Ind Drg:    2 Iszak:       2 Ind Sol:     1 

Satellite Number:  16 Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements : 0.70806400000000O0D+04 
0.1180000000000000D-02 
0.9817200000000000D+02 
0.1425000000000000D+03 
0.9000000000000000D+02 
O.0OOOOO0OO0O00O0OD+OO 

CD:                 2.20000000 Rho One:         0.00000000 
S/C Mass:         800.00000000 S/C Area:       0.00014400 
Integrator Step: 43200.00000000 

Retro:     1 Atmos Mdl:   1 Potent Mdl:  4 
Nmax:      21 Mmax:       21 Izonal:      1  IJ2J2:   1 
Nmaxrs:    21 Mmaxrs:     21 Ithird:     1 
Ind Drg:    2 Iszak:       2 Ind Sol:     1 

Satellite Number:  17  Epoch Date: 19950401.0  Epoch Time:   0.00 
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Keplerian  Elements 0.7081140000000000D+04 
0.1180000000000000D-02 
0.9817400000000000D+02 
0.152 0000000000000D+03 
0.9000000000000000D+02 
O.OOOOOOOOOOOOOOOOD+00 

CD: 2.20000000 Rho One: 
S/C Mass: 800.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 

Satellite Number:  18 Epoch Date: 19950401.0 Epoch Time: 0.00 

Keplerian  Elements 0.7081640000000000D+04 
0.1180000000000000D-02 
0.9817 600000000000D+02 
0.1615000000000000D+03 
0.9000000000000000D+02 
0.0000000000000000D+00 

CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 Potent Mdl: 4 
21 Izonal: 1 
21 Ithird: 1 
2 Ind Sol: 1 

IJ2J2: 

Satellite Number:  19 Epoch Date: 19950401.0 Epoch Time: 0.00 

Keplerian  Elements 0.7082140000000000D+04 
0.1180000000000000D-02 
0.9817800000000000D+02 
0.1710000000000000D+03 
0.9000000000000000D+02 
O.OO00O000OO0O00OOD+OO 

CD: 2.20000000 Rho One: 
S/C Mass: 800.00000000 S/C Area: 
Integrator Step: 43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

:   1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

4 
1  IJ2J2:   1 
1 
1 

Satellite 

Keplerian 

Number:  20 

Elements : 

Epoch Date: 19950401.0  Epoch Time: 

0.7082640000000000D+04 

0.00 

0.1180000000OOOOOOD-02 
0.9818000000000OOOD+02 
0.1805000000000000D+03 
0.9000000000000000D+02 
O.OOOOOOOOOOOOOOOOD+OO 
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CD: 
S/C Mass: 
Integrator Step: 

2.20000000 Rho One: 
800.00000000 S/C Area: 

43200.00000000 

0.00000000 
0.00014400 

Retro: 
Nmax: 
Nmaxrs: 
Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 

21 

21 

2 

Potent Mdl: 

Izonal: 

Ithird: 

Ind Sol: 

IJ2 J2 : 

Satellite Number:  21  Epoch Date: 19950401.0  Epoch Time:   0.00 

Keplerian  Elements 0.7083140000000000D+04 

0.1180000000000000D-02 

0.9818200000000000D+02 

0.1900000000000000D+03 

0.9000000000000000D+02 

0.000000000OOOOOOOD+00 

CD: 

S/C Mass: 

Integrator Step: 

2.20000000 Rho One: 

800.00000000 S/C Area: 

43200.00000000 

0.00000000 

0.00014400 

Retro: 

Nmax: 

Nmaxrs: 

Ind Drg: 

1 Atmos Mdl: 
21 Mmax: 
21 Mmaxrs: 
2 Iszak: 

1 
21 
21 
2 

Potent Mdl: 
Izonal: 
Ithird: 
Ind Sol: 

IJ2J2: 
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Appendix C:   Data Files 

This appendix documents the data files that were used for each of the 
program executions performed in conjunction with this thesis. 

All the tests using the PVM/DSST used data files are stored in the Continuus 
Configuration Management system.   Instructions on the use of this system 
can be found in [73]. The data files used for the PVM/DSST can be found in: 

Database: satUtil_db 
Project:     BSD,L1 

C.l Software Validation Tests 

C.l.l    Comparison to Orbit_Propagator_Services (OPS) 

Table B-l: Data Files used for OPS to PVM/DSST Comparison 

epotfld radarsat_earthfld.dat 
jacdat jacchia.data_sun 

slpl950 de96_slpl950.dat 

slptod de96_slptod.dat 

timecoef de96 _timcoef.dat 
newcomb N/A1 

C.l.2   Comparison to GTDS 

Table B-2: Data Files used for GTDS to PVM/DSST Comparison 

epotfld 
acdat 

slpl950 
slptod 

timecoef 
newcomb 

radarsat earthfld.dat 
r schatten_nom.dat 
orbit.slp.mnl950.dat 
orbit.slp.todl950.dat 
orbit.slp.timcof.dat 

N/A 

1 This file was not needed for any of these tests. 
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C.2 Performance Analysis 

Table B-3: Data Files used for Performance Analysis 
epotfld radarsat_earthfld.dat 
jacdat jr_schatten_nom.dat 
slpl950 orbit.slp.mnl950.dat 
slptod orbit.slp.todl950.dat 

timecoef orbit.slp.timcof.dat 
newcomb N/A 

C.3 Teledesic Analysis 

Table B-4: Data Files used in the Teledesic Analysis 
epotfld radarsat_earthfld.dat 
jacdat jr_schatten_nom.dat 
slpl950 orbit.slp.mnl950.dat 
slptod orbit.slp.todl950.dat 

timecoef orbit.slp.timcof.dat 
newcomb N/A 
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Appendix D:   Using the PVM/DSST 

This Appendix provides a description of the software, how to access the 
current version and how to execute it from the Draper Laboratory 

environment. 

Section D.l describes the different executables currently built from the 
software. Section D.2 describes the input files for the various executables. 

Section D.3 details test case execution of the software. 

D.l Executable Description 

The software is currently written to generate the executables described in table 

D-l. 
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Table D-l: Executable Description 

Executable Name Description 
test_sat_prop Executes the DSST for one satellite. The orbit and satellite 

are hard-coded in the file 'test_sat_prop.F'. 

const_prop Propagates the satellites described in the input file. Prompts 
user for input file. Requires environment variable 

CONSTJNPUT be set to the directory with the links to the 
input files. The output, ECEF positions, are written in the 
CONST_OUTPUT (also an environment variable) to the files 

satdata?, where ? is the satellite number. 

const_prop_kep Same as constjprop except the output is written in Keplerian 

elements. 

ga32 Executes the genetic algorithm optimization software. 

Currently set to find the best frozen orbit (minimize changes 

from initial eccentricity). Input data files must be located in 

the CONSTJNPUT directory. The environment variable 

OPT_FILE describes the name of the input file. GA output 

files are put in the current working directory. Uses the 

const_opt_slave executable to perform propagation. The cost 
function is located in sat_opt.F. To change the number of 
modifiable parameters, (currently set to one) the following 

changes must be made: 

declare.inc (GAOPT project) : Set mxalfa and mxcont to the 

number of parameters and recompile the software. 

const_opt.F (DSST_SHELL) : The values sent to the slave 

task must contain the values passed in through the GA 

software. 

const_opt_slave Used by ga.32 to evaluate the cost functions. Must be a 

spawned process as the required input be sent via PVM. 

D.2 Input File Description 

D.2.1    const_prop Input Files 

The following data files are necessary to execute the propagator. 
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Table D-2: Data Files Description 

Name of File Description 
epotfld Earth potential models file. 
jacdat Jacchia data for drag 

information. 
slP1950 Solar, Lunar, Planetary 

ephemeris file in Mean of 
1950 coordinates. 

slptod Same as above in GTDS true- 
of-date coordinates. 

timecoef Timing coefficients file. 
newcomb Newcomb operators file. 

The operator is prompted for the orbit input file or the OPTJFILE 
environment variable is used (see Table D-l). 

The output is controlled by the CONSTJDUTPUT environment variable. 

D.2.2   Genetic Algorithm (GA) Input Files 

The environment variable OPTJFILE describes the input file. The input path 
is given by CONSTJNPUT. This variable also describes the location of the 

data files. 

The GA requires the file 'dome.in' to be in the current working directory 
(CWD). A typical 'dome.in' file is shown in figure D-l and explained in table 

D-3. 

itest 
iopt,maxitr,epsiln 
kseed,mpopsize,ncomp 
Opts:  constr,clones,Popt,Ropt,Topt,ishr 
fixed parameters 
continuous parameters 
it chooses initial conditions 
min of continuous 
max of continuous 
discrete parameters (3 failure rates) 
number of bins for each discrete parameter 
initial discrete (ga: param# ie. #1) 

.001175, 

Choose  the most frozen 
0 
9 250,0.07, 
20985,50,1, 
1 0,0,0,0.2 ,0, 
0 
1 
0 0,0, 
0 001000, 
0 001200, 
0 
4 
0 
.001169,.001171 .001173 

Figure D-l:  'dome.in' Input File 
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Table D-3:  'dome.in' Description2 

Parameter Description 

iopt Optimization method. 

9-Traditional GA 

10- 'Improved' GA [64] 

maxitr Maximum number of iterations 

epsiln Convergence tolerance, where convergence describes how sure 

the GA is of the answer. Typical values range from 0.1, 0.9 

(0<epsiln<l). 

0 - Easy to converge 
1 - Difficult to converge 

kseed Random number seed. 

mpopsize Population size. 

continuous parameters Number of continuous parameters. Discrete parameters are 

parameters for which only specific values can be chosen. 

it chooses... A zero followed by a comma is needed for every parameter. 

min of continuous 

max of continuous 

Parameter ranges. 

D.3 Executing the PVM/DSST 

This Section describes how to access the software developed for this thesis. 

The user is assumed to have access to the Continuus Configuration 

Management Tool (CCM), MATLAB, and be working within the BASH shell. 

In addition, to execute the entire test suite without repeating sections, all 

commands must be executed on the same type of computer. 

The following convention will be used in the next three sections: 

• The operator is the individual running the tests. 

• The symbol . . . indicates there will output coming from the computer 
that was not listed in this document. 

• The > symbol was the prompt in the environment used to generate the 
tests. 

Courier font represents text taken directly off the computer 
screen. 

2Only the parameters described in Table D-3 were used. Other parameters did not need to be 
modified. Information concerning these parameters can be found in [65] 
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Bold courier describes  information that must be  entered 
exactly as  shown. 

D.3.1    Environment Setup 

Before executing the software, the operator will need to copy two setup files 

into their home directory. These files are automatically executed at login and 

will create the environment for the rest of the tests. 

If these files already exist in the operator's home directory, they should be 

renamed to a different file before continuing; otherwise they will be 

overwritten. 

The first commands shown copy the necessary files into the operator's home 

directory. 

>cp     /Users/taz/scott/.ccmdefaults 
>cp    /Users/taz/scott/.UserLogin 

The operator should now completely logoff and then log in to the computer. 

D.3.2   Building PVM 

If the operator does not have PVM installed, it must be installed and built as 

described in this section before continuing. The parallel virtual machine is 

very easy to build. General instructions can be found in [13]. The instructions 

in this section are specific to the Draper environment. 

PVM can be installed by root such that everyone has access to the same pvm 

and pvmd executables. However, PVM can also be installed in the operator's 

home directory, so that root privileges are not required. 

PVM, along with many other useful utilities and information, is kept on the 

lab-wide file server fsl. If PVM is not found on the fsl, it can be obtained over 

the Internet through anonymous ftp to netlib2.cs.utk.edu. 
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To get PVM type: 

>cd 
>cp  /nfs/fsl/ftp/source/hpc/pvm/pvm3.3.7.tar.gz  ~/. 

The environment variable, PVMJROOT, must be set to before building PVM. 

If PVM is installed in the operator's home directory, PVM_ROOT is set in the 

login files copied in Section D.3.1. Otherwise, PVM_ROOT must be set 

manually. 

To build PVM in the operator's home directory type: 

>cd 
>tar  -xzf  pvm3 .3.7.tar.gz 
>cd pvm3 
>make 

D.3.3    Starting the Configuration Management Tool 

CCM projects a copy of its file system into the user's directory using soft links. 
All the work for this thesis is contained in the satUtil_db database. 

A database contains projects and a project contains the software. The software 

for this thesis was divided into projects as much as practical so that it was 
easier to work with. Dividing up the original stand alone-code DSST into 
functional projects would have been desirable but represented a significant 
effort that was not accomplished as a part of this thesis. 

The software for this thesis is divided into the following projects: 
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Table D-4: Project Descriptions 

Project Brief Description 

PDSST-2.0 Highest level project.  Contains all 
the other projects and  makefiles. 

GAOPT-2.0 Genetic algorithm optimization 

software. 

DSST_SHELL-2.0 Software for performing 

constellation propagation. 

DSST_BASE-2.0 The stand-alone DSST software. 

BSD-1.1 Binary data files. 

The configuration management tool will be used here without a graphical 
user interface (GUI). This is done so that the description presented here is 
complete. 

>cd 
>ccm start  -nogui 
Starting Continuus/CM... 

>ccm sync  PDSST-2.0 
Personal workarea update starting for /Users/taz/scott/ccm_satUtil_db/ 

Updating /Users/taz/scott/ccm_satUtil_db/PDSST-2.0/ . . . 
Updating /Users/taz/scott/ccm_satUtil_db/BSD-l.1/... 
Updating /Users/taz/scott/ccm_satUtil_db/DSST_BASE-2.0/... 
Updating /Users/taz/scott/ccm_satUtil_db/DSST_SHELL-2.0/. .. 
Updating /Users/taz/scott/ccm_satUtil_db/GAOPT-2.0/... 

Personal workarea update complete. 

At this point, the projects are projected into the operator's account. 

D.3.4   Executing the Software 

Two different tests are performed to demonstrate that the software is fully 
tested. The first test is the serial test case described in Chapter 3. PVM is not 
used in this test. 
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D.3.4.1 Serial Test Case 

After completing sections D.3.1, D.3.2 and D.3.3 type: 

>cd 
>cd  ccm_satUtil_db/DSST_BASE-2. 0/DSST_BASE 
>ls 
Makefile.aimk  include       test 
data_files     source 

The script aimk comes with the PVM distribution. It executes the UNIX 
make facility after creating a directory based on the architecture and operating 

system of the computer. The object files are placed into this directory, so 

heterogeneous platforms using a shared disk can safely build the same 
executable. Note that the SUN4SOL2 in the next line describes the platform 

used to generate these tests. This will be different dependent on the platform 

the operator is using. 

>aimk     test_sat_prop 
making  in  SUN4SOL2/   for  SUN4S0L2 

>export      CONST_INPUT=./test/ 

The next command will run the DSST using the input files described in 
./test/ directory. The output file generated, 'test.saLprop.out', is also placed 

into the ./test/ directory. 

>test_sat_prop 
0 

>cd    test 
>matlab 

>>   verif_sat_prop 

Your  results   are   : 
1.0e+03   * 

7.07759761564452 
0.00000036439527 
0.09824506769856 
0.00204663721379 
0.14760422493377 
0.17541971016900 

> > qui t 

Note that these results match the numbers given in table 3-10. 

This completes the serial test case. 
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D.3.4.2 GA Test Case 

This test case executes the genetic algorithm optimization software, set up to 
find a frozen orbit. This test case executes on two computers. It is assumed 

that the second computer is a different type according to PVM, so PVM will 

also be built on the second computer. 

>cd 
>cd      ~/ccm_satUtil_db/PDSST-2.0/PDSST 
>export       CONST_INPUT=$HOME/ccm_satUtil_db/PDSST-2.0/PDSST/test/ 
>aimk    all 
making in SUN4SOL2/ for SUN4SOL2 

>rsh porky- 
Last login: ... 
>cd 
> cd pvm3 
>make 

>cd  -/ccm_satUtil_db/PDSST-2.0/PDSST 

>aimk all 
making in SUN4/ for SUN4 

>exit 
>pvm 
pvm>    add    porky 
1   successful 

HOST DTID 
porky 80000 

pvm>   quit 

>cd test 
>ls 
dome.ir.     loadmats.m nom_sat. in  opt_sat. in 

This directory contains the input files necessary to execute the optimization 

algorithm. 

The next commands link the appropriate data files for use by the propagator. 
The commands each take two lines to describe but should be entered into the 

computer as a single line. 

>ln  -s  ~/ccm_satUtil_db/PDSST-2.0/PDSST/BSD/sun_binary_data/ 
radarsat_earthfld.dat  epotfld 
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>ln  -s  ~/ccm_satUtil_db/PDSST-2.0/PDSST/BSD/sun_binary_data/ 
jr_schatten_nom.dat  jacdat 
>ln  -s  ~/ccm_satUtil_db/PDSST-2.0/PDSST/BSD/sun_binary_data/ 
orbit.slp.mnl950.dat  slpl950 
>ln  -s  ~/ccm_satUtil_db/PDSST-2.0/PDSST/BSD/sun_binary_data/ 
orbit.slp.todl950.dat  slptod 
>ln  -s  ~/ccm_satUtil_db/PDSST-2.0/PDSST/BSD/sun_binary_data/ 
orbit.slp.timcof.dat  timecoef 
>export  OPT_FILE=nom_sat.in 

The next command starts the optimization process, where the cost function 
evaluation takes place on two processors. 
>ga32 

0 
50 
95 

>more Dz 
50 50 0 1.64641633E-05 1.17098039E-03 1.53222466E-02 
95 50 11 1.64641633E-05 1.17098039E-03 4.34377119E-02 

139 50 14 1.64641633E-05 1.17098039E-03 8 . 91743973E-02 

(The times and dates indicated in the following file are not important) 
>more DO 
****  DOME BEGAN ON 11-May-95 AT 06:28:22    **** 

Run ID: Choose most frozen eccentricity 

* Optimization method:    9 * 
Optimization search stopping criterion: 7.0000E-02 
Maximum number of optimization iterations: 250 
Genetic Algorithm: 
population size:        50  random number seed:       20985 
crossover: 0.80  per bit mutation: 0.0040 
markov model states:     1  fixed parameters: 0 
continuous: 1  discrete parameters: 0 

continuous    initial       lower       upper 
variable     value       bound       bound 

1       O.0O00E+OO   1.0000E-03   1.2000E-03 
cfe#    139        ** stop due to population convergence ** 

Parameters reverted to original:        0 
Total cost function evaluations:      139 
Evaluation of minimum value: 50 
Algorithm elapsed time: 100.5320 

Function value Parameter values 
12 3 4 5 

1.64641633E-05   1.17098039E-03 
****  DOME TERMINATED ON 11-May-95 AT 06:30:03    **** 
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D.3.4.3 const_prop Test Case 

This test case propagates the two orbits described in the file 'opt_sat.in'. This 
file contains the same orbit and satellite information as 'nom_sat.in' for the 

first satellite. The second satellite is identical except for the eccentricity is the 
value chosen by the GA execution in section D.3.2. The results, in the form of 

two MATLAB plots, are output to the screen as well as encapsulated post 

script files. 

>const_prop_kep 
/Users/taz/scott/ccm_satUtil_db/PDSST-2.0/PDSST/test/ 
Please  enter  the  name  of  the  constellation  file: 

opt_sat.in 
I   sent   satellite     1   to   taz 
I  sent  satellite     2   to  taz 
I   received  from  taz 
I   received  from  taz 

>matlab 

>>loadmats 

>>quit 
> 

The plots generated by the loadmats command are depicted in figures D-2 

and D-3. 
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Eccentricity vs Time 

1.175 
Optimized Result 

I   1.17 
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Argument of Perigee vs Time 
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Figure D-2:  Nominal vs. Optimized Eccentricity and Argument of Perigee 
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Figure D-3: Argument of Perigee vs. Eccentricity 
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